Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,010 result(s) for "Xu, Lina"
Sort by:
Analysis of respiratory pathogen detection in hospitalized children with acute respiratory tract infections after ending the zero COVID policy
After ending the three-year zero COVID policy in China, the epidemiology of other respiratory pathogens has been affected. This study aimed to characterize of common respiratory pathogen infections in pediatric patients hospitalized for acute respiratory tract infections (ARTIs) in Suzhou before and after ending the zero COVID policy. Nasopharyngeal aspirates (NPAs) were obtained from children with ARTIs (aged ≤ 16 years) at the Children’s Hospital of Soochow University for the detection of respiratory syncytial virus (RSV), influenza A (FluA), FluB, human parainfluenza virus (HPIV), adenovirus (ADV), human rhinovirus (HRV), bocavirus (BoV), human metapneumovirus (HMPV), and mycoplasma pneumoniae (MP). The data were compared between two periods: January 2020 to December 2022 (before ending the zero COVID policy) and January 2023 to May 2024 (after ending the zero COVID policy). Patients were divided into four groups: 0–2, ≥ 3–5, ≥ 6–10, and ≥ 11–16 years. A total of 42,379 patients were enrolled and the top four pathogens identified were MP, HRV, RSV and HPIV with positive rates of 20.2%, 19.5%, 15.1%, and 6.9%, respectively. A total of 28,352 positive cases were detected, with positive rates of 54.0% ( n  = 11,850/21,941) and 80.7% ( n  = 16,502/20,438) before and after ending the zero COVID policy, respectively. Total RSV, HRV, HPIV, and MP positivity increased by 27.8%, 39.0%, 12.3%, and 322.7%, respectively, after ending the zero COVID policy compared to positivity before the policy. After ending the zero COVID policy, the positive rates of RSV, HRV, and HPIV increased most in children aged 0–2 years, with increases by 88.8% (OR: 2.3, 95% CI: 2.2–2.5), 50.0% (OR: 1.6, 95% CI: 1.5–1.7), and 69.6% (OR: 1.8, 95% CI: 1.6-2.0), respectively. The greatest increase in MP positivity was 316.9% in the 3–5 years (OR: 5.5, 95% CI: 4.9–6.1). After ending the zero COVID policy, the RSV-positive rate increased most in summer, while HRV was predominantly circulated in spring and the MP-positive rate peaked in autumn. Ending the zero COVID policy facilitated the transmission of common respiratory pathogens in children. Post-pandemic surveillance and control of respiratory pathogens must be strengthened to reduce health risks.
Multi-objective workflow optimization strategy (MOWOS) for cloud computing
Workflow scheduling involves mapping large tasks onto cloud resources to improve scheduling efficiency. This has attracted the interest of many researchers, who devoted their time and resources to improve the performance of scheduling in cloud computing. However, scientific workflows are big data applications, hence the executions are expensive and time consuming. In order to address this issue, we have extended our previous work ”Cost Optimised Heuristic Algorithm (COHA)” and presented a novel workflow scheduling algorithm named Multi-Objective Workflow Optimization Strategy (MOWOS) to jointly reduce execution cost and execution makespan. MOWOS employs tasks splitting mechanism to split large tasks into sub-tasks to reduce their scheduling length. Moreover, two new algorithms called MaxVM selection and MinVM selection are presented in MOWOS for task allocations. The design purpose of MOWOS is to enable all tasks to successfully meet their deadlines at a reduced time and budget. We have carefully tested the performance of MOWOS with a list of workflow inputs. The simulation results have demonstrated that MOWOS can effectively perform VM allocation and deployment, and well handle incoming streaming tasks with a random arriving rate. The performance of the proposed algorithm increases significantly in large and extra-large workflow tasks than in small and medium workflow tasks when compared to the state-of-art work. It can greatly reduce cost by 8%, minimize makespan by 10% and improve resource utilization by 53%, while also allowing all tasks to meet their deadlines.
Finite element simulation study on vertical bearing characteristics of single pile with ram-compacted bearing sphere
The pile with ram-compacted bearing sphere ( PRBS )is a kind of special-shaped pile, the calculation formula of single pile bearing capacity stipulated in Chinese Standards JGJ/T 135–2018 is relatively simple, and the factors considered are not comprehensive enough. This article uses the finite element simulation software ABAQUS to simulate and calculate the compressive bearing characteristics of PRBS , and studies the changes in the vertical bearing characteristics of PRBS under different factors and working conditions (different pile lengths, pile diameters, and the diameters of ram-compacted bearing sphere ( RBS )). The calculation results indicate that the PRBS still has a large axial force near the enlarged end of the pile bottom, and the RBS bears a large load. The vertical bearing capacity of the PRBS is mainly provided by the RBS , but the pile side friction still has a certain degree of influence on its bearing capacity. The maximum ratio of pile side frictional resistance to applied load can reach 18.41%. Compared with the ordinary pile, the bearing capacity of the PRBS is significantly improved. The ultimate bearing capacity of the PRBS with the RBS diameter of 1m is more than 5 times that of the ordinary pile under the same condition. Pile diameter has little influence on the bearing capacity of PRBS , while the change of RBS diameter has great influence on the bearing capacity of single pile. However, when the RBS diameter is too large, it is easy to cause the uplift of surrounding soil in the construction process and affect surrounding piles. Therefore, it is suggested that the optimal RBS diameter should be 800mm~1200mm. This study provides reference suggestions for the study of piles with ram-compacted bearing sphere.
TAp73-induced phosphofructokinase-1 transcription promotes the Warburg effect and enhances cell proliferation
The Warburg effect is a prominent metabolic feature associated with neoplastic diseases; however, the underlying mechanism remains incompletely understood. TAp73, a structural homolog of the tumor suppressor p53, is frequently overexpressed in human tumors, indicating a proliferative advantage that it can confer to tumor cells. Here we show that TAp73 stimulates the expression of phosphofructokinase-1, liver type (PFKL), which catalyzes the committed step in glycolysis. Through this regulation, TAp73 enhances glucose consumption and lactate excretion, promoting the Warburg effect. By activating PFKL, TAp73 also increases ATP production and bolsters anti-oxidant defense. TAp73 deficiency results in a pronounced reduction in tumorigenic potential, which can be rescued by forced PFKL expression. These findings establish TAp73 as a critical regulator of glycolysis and reveal a mechanism by which tumor cells achieve the Warburg effect to enable oncogenic growth. TAp73 is a structural homolog of the tumor suppressor p53. Here they show that TAp73 is critical for promoting glycolysis as it stimulates the transcriptional expression of liver type of phosphofructokinase-1 (PFKL), which catalyzes the committed step in glycolysis.
High serum uric acid is a risk factor for arterial stiffness in a Chinese hypertensive population: a cohort study
The prospective cohort study was to explore the association between serum uric acid (SUA) and arterial stiffness in a Chinese hypertensive population. A total of 7444 participants with hypertension who completed two or more measurements of brachial-ankle pulse wave velocity (baPWV) and baseline SUA detection were followed-up in the Kailuan Study from 2010 to 2020. A restricted cubic spline curve was used to verify whether there was a linear association between baseline SUA and arterial stiffness. A Cox proportional hazard regression model was used to explore the association of between baseline SUA and the incidence of arterial stiffness. Our results showed that the restricted cubic spline curve revealed a linear relationship between baseline SUA and arterial stiffness in total participants (p < 0.001). After follow-up 4.6 ± 2.8 years, Kaplan-Meier survival curves indicated that the risk of arterial stiffness was increased in the high level of baseline SUA (Log-rank p = 0.0002). After adjusting for potential confounding factors, the HR (95% CI) for risk of stiffness was 1.33 (1.17-1.52, p < 0.001) in the highest SUA group. Hierarchical analysis showed that the HRs (95% CI) for risk of arterial stiffness were 1.45 (1.25-1.69), 1.38 (1.19-1.60), 1.41 (1.21-1.64), and 1.35 (1.15-1.58) in the highest SUA group of males, <65 years old, not taking antihypertensive drugs, and failure to achieve the control targets of blood pressure respectively (p < 0.001). These results reveal that high SUA is a risk factor for arterial stiffness in the Chinese hypertensive population.
DSEPGAN: A Dual-Stream Enhanced Pyramid Based on Generative Adversarial Network for Spatiotemporal Image Fusion
What are the main findings? A Dual-Stream Enhanced Pyramid based on GAN (DSEPGAN) is proposed for spatiotemporal fusion of remote sensing images. The model integrates reversible detail preservation and large-kernel feature reconstruction to enhance fine spatial details. What are the implications of the main finding? DSEPGAN significantly improves detail and edge restoration in regions with pronounced phenological and land-cover changes, ensuring high-fidelity spatiotemporal reconstruction. The dual-stream reversible pyramid design provides a new framework for multi-modal image fusion and change analysis. Many deep learning-based spatiotemporal fusion (STF) methods have been proven to achieve high accuracy and robustness. Due to the variable shapes and sizes of objects in remote sensing images, pyramid networks are generally introduced to extract multi-scale features. However, the down-sampling operation in the pyramid structure may lead to the loss of image detail information, affecting the model’s ability to reconstruct fine-grained targets. To address this issue, we propose a novel Dual-Stream Enhanced Pyramid based on Generative Adversarial Network (DSEPGAN) for the spatiotemporal fusion of remote sensing images. The network adopts a dual-stream architecture to separately process coarse and fine images, tailoring feature extraction to their respective characteristics: coarse images provide temporal dynamics, while fine images contain rich spatial details. A reversible feature transformation is embedded in the pyramid feature extraction stage to preserve high-frequency information, and a fusion module employing large-kernel and depthwise separable convolutions captures long-range dependencies across inputs. To further enhance realism and detail fidelity, adversarial training encourages the network to generate sharper and more visually convincing fusion results. The proposed DSEPGAN is compared with widely used and state-of-the-art STF models in three publicly available datasets. The results illustrate that DSEPGAN achieves superior performance across various evaluation metrics, highlighting its notable advantages for predicting seasonal variations in highly heterogeneous regions and abrupt changes in land use.
Potent effects of dioscin against liver fibrosis
We previously reported the promising effects of dioscin against liver injury, but its effect on liver fibrosis remains unknown. The present work investigated the activities of dioscin against liver fibrosis and the underlying molecular mechanisms. Dioscin effectively inhibited the cell viabilities of HSC-T6, LX-2 and primary rat hepatic stellate cells (HSCs), but not hepatocytes. Furthermore, dioscin markedly increased peroxisome proliferator activated receptor-γ (PPAR-γ) expression and significantly reduced a-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1), collagen α1 (I) (COL1A1) and collagen α1 (III) (COL3A1) levels in vitro . Notably, dioscin inhibited HSCs activation and induced apoptosis in activated HSCs. In vivo , dioscin significantly improved body weight and hydroxylproline, laminin, α-SMA, TGF-β1, COL1A1 and COL3A1 levels, which were confirmed by histopathological assays. Dioscin facilitated matrix degradation and exhibited hepatoprotective effects through the attenuation of oxidative stress and inflammation, in addition to exerting anti-fibrotic effects through the modulation of the TGF-β1/Smad, Wnt/β-catenin, mitogen-activated protein kinase (MAPK) and mitochondrial signaling pathways, which triggered the senescence of activated HSCs. In conclusion, dioscin exhibited potent effects against liver fibrosis through the modulation of multiple targets and signaling pathways and should be developed as a novel candidate for the treatment of liver fibrosis in the future.
Mechanical properties and acoustic emission characteristics of basalt fiber reinforced cemented silty sand subjected to freeze–thaw cycles
Freeze–thaw (F–T) cycling poses a significant challenge in seasonally frozen zones, notably affecting the mechanical properties of soil, which is a critical consideration in subgrade engineering. Consequently, a series of unconfined compressive strength tests were conducted to evaluate the influence of various factors, including fiber content, fiber length, curing time, and F–T cycles on the unconfined compression strength (UCS) of fiber-reinforced cemented silty sand. In parallel, acoustic emission (AE) testing was conducted to assess the AE characteristic parameters (e.g., cumulative ring count, cumulative energy, energy, amplitude, RA, and AF) of the same material under F–T cycles, elucidating the progression of F–T-induced damage. The findings indicated that UCS initially increased and then declined as fiber content increased, with the optimal fiber content identified at 0.2%. UCS increased with prolonged curing time, while increases in fiber length and F–T cycles led to a reduction in UCS, which then stabilized after 6 to 10 cycles. Stable F–T cycles resulted in a strength loss of approximately 30% in fiber-reinforced cemented silty sand. Furthermore, AE characteristic parameters strongly correlated with the stages of damage. F–T damage was segmented into three stages using cumulative ring count and cumulative energy. An increase in cumulative ring count to 0.02 × 10 4 times and cumulative energy to 0.03 × 10 4  mv·μs marked the emergence of critical failure points. A sudden shift in AE amplitude indicated a transition in the damage stage, with an amplitude of 67 dB after 6 F–T cycles serving as an early warning of impending failure.
Protective Effect of the Total Flavonoids from Rosa laevigata Michx Fruit on Renal Ischemia-Reperfusion Injury through Suppression of Oxidative Stress and Inflammation
Renal ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI). Our previous studies have shown that the total flavonoids (TFs) from Rosa laevigata Michx fruit has various activities, however, there were no papers reporting the role of the TFs against renal IRI. In the present work, a hypoxia/reoxygenation (H/R) model in NRK-52E cells and ischemia-reperfusion model in rats were used. The results showed that the TFs significantly attenuated cell injury and markedly decreased serum creatinine (Cr) and blood urea nitrogen (BUN) levels in rats. Further investigation revealed that the TFs markedly decreased the levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) and glutathione peroxidase (GSH-Px) and intracellular reactive oxygen species (ROS), up-regulated the levels of silent information regulator factor 2-related enzyme 1 (Sirt1), nuclear factor erythroid 2-related factor-2 (Nrf2) and heme oxygenase-1 (HO-1), down-regulated the levels of Kelch like ECH-associated protein-1 (Keap1) and the nuclear translocation of nuclear factor-κBp65 (NF-κBp65), and decreased the mRNA levels of interleukine-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Furthermore, inhibiting Sirt1 by siRNA showed that the role of the natural product in protecting renal IRI was significantly attenuated, suggesting that the effect of the extract against renal IRI depended on Sirt1. Taken together, the TFs has significantly nephroprotective effect against IRI by affecting Sirt1/Nrf2/NF-κB signaling pathway, which should be developed as a new therapeutic agent or food additives to treat acute kidney injury in the future.
Neuroprotective Effect of Dioscin on the Aging Brain
Our previous works have shown that dioscin, a natural product, has various pharmacological activities, however, its role in brain aging has not been reported. In the present study, in vitro H2O2-treated PC12 cells and in vivo d-galactose-induced aging rat models were used to evaluate the neuroprotective effect of dioscin on brain aging. The results showed that dioscin increased cell viability and protected PC12 cells against oxidative stress through decreasing reactive oxygen species (ROS) and lactate dehydrogenase (LDH) levels. In vivo, dioscin markedly improved the spatial learning ability and memory of aging rats, reduced the protein carbonyl content and aging cell numbers, restored the levels of superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GSH-Px), malondialdehyde (MDA) and nitric oxide synthase (NOS) in brain tissue, and reversed the histopathological structure changes of nerve cells. Mechanism studies showed that dioscin markedly adjusted the MAPK and Nrf2/ARE signalling pathways to decrease oxidative stress. Additionally, dioscin also significantly decreased inflammation by inhibiting the mRNA or protein levels of TNF-α, IL-1β, IL-6, CYP2E1 and HMGB1. Taken together, these results indicate that dioscin showed neuroprotective effect against brain aging via decreasing oxidative stress and inflammation, which should be developed as an efficient candidate in clinical to treat brain aging in the future.