Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,040
result(s) for
"Xu, Yanjun"
Sort by:
Therapeutic effects of DOX-loaded hydrogel MOF nanocarriers on triple negative breast cancer and derivative design via reinforcement learning
2024
Triple negative breast cancer (TNBC) is one of the most difficult of all types of breast cancer to treat. TNBC is characterized by the absence of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. The development of effective drugs can help to alleviate the suffering of patients. The novel nickel(II)-based coordination polymer (CP), [Ni
2
(HL)(O)(H
2
O)
3
·H
2
O] (
1
) (where H
4
L=[1,1’:2’,1’’-triphenyl]-3,3’’,4’,5’-tetracarboxylic acid), was synthesized via solvothermal reaction in this study. The overall structure of CP
1
was fully identified by SXRD, Fourier transform infrared spectroscopy and elemental analysis. Using advanced chemical synthesis, we developed Hyaluronic Acid/Carboxymethyl Chitosan-CP
1
@Doxorubicin (HA/CMCS-CP1@DOX), a nanocarrier system encapsulating doxorubicin (DOX), which was thoroughly characterized using Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and Thermogravimetric Analysis (TGA). These analyses confirmed the integration of doxorubicin and provided data on the nanocarriers’ stability and structure. In vitro experiments showed that this system significantly downregulated Tissue Inhibitor of Metalloproteinases-1 (TIMP-1) in triple-negative breast cancer cells and inhibited their proliferation. Molecular docking simulations revealed the biological effects of CP
1
are derived from its carboxyl groups. Using reinforcement learning, multiple new derivatives were generated from this compound, displaying excellent biological activities. These findings highlight the potential clinical applications and the innovative capacity of this nanocarrier system in drug development.
Journal Article
Canagliflozin primes antitumor immunity by triggering PD-L1 degradation in endocytic recycling
2023
Understanding the regulatory mechanisms of PD-L1 expression in tumors provides key clues for improving immune checkpoint blockade efficacy or developing novel oncoimmunotherapy. Here, we showed that the FDA-approved sodium-glucose cotransporter-2 (SGLT2) inhibitor canagliflozin dramatically suppressed PD-L1 expression and enhanced T cell-mediated cytotoxicity. Mechanistic study revealed that SGLT2 colocalized with PD-L1 at the plasma membrane and recycling endosomes and thereby prevented PD-L1 from proteasome-mediated degradation. Canagliflozin disturbed the physical interaction between SGLT2 and PD-L1 and subsequently allowed the recognition of PD-L1 by Cullin3SPOP E3 ligase, which triggered the ubiquitination and proteasome-mediated degradation of PD-L1. In mouse models and humanized immune-transformation models, either canagliflozin treatment or SGLT2 silencing significantly reduced PD-L1 expression and limited tumor progression - to a level equal to the PD-1 mAb - which was correlated with an increase in the activity of antitumor cytotoxic T cells. Notably, prolonged progression-free survival and overall survival curves were observed in the group of PD-1 mAb-treated patients with non-small cell lung cancer with high expression of SGLT2. Therefore, our study identifies a regulator of cell surface PD-L1, provides a ready-to-use small-molecule drug for PD-L1 degradation, and highlights a potential therapeutic target to overcome immune evasion by tumor cells.
Journal Article
Sunvozertinib overcoming resistance to afatinib and osimertinib in lung adenocarcinoma harboring an EGFR exon 18 DelE709_T710insD mutation
by
Peng, Zhongsheng
,
Xu, Yanjun
,
Ding, Kaibo
in
Acrylamides - pharmacology
,
Acrylamides - therapeutic use
,
Adenocarcinoma of Lung - drug therapy
2024
Journal Article
MiR-375 frequently downregulated in gastric cancer inhibits cell proliferation by targeting JAK2
by
Ling Ding Yanjun Xu Wei Zhang Yujie Deng Misi Si Ying Du Haomi Yao Xuyan Liu Yuehai Ke Jianmin Si Tianhua Zhou
in
631/136/2091
,
631/337/384/331
,
631/80/86
2010
Emerging evidence has shown the association of aberrantly expressed microRNAs (miRNAs) with tumor development and progression. However, little is known about the potential role of miRNAs in gastric carcinogenesis. Here, we performed miRNA microarray to screen miRNAs differentially expressed in the paired gastric cancer and their adjacent nontumor tissues and found that miR-375 was greatly downregulated in gastric cancer tissues. Quantitative real-time PCR analysis verified that miR-375 expression was significantly decreased in more than 90% of primary gastric cancers compared with their nontumor counterparts from patients undergoing gastric resection. Overexpression of miR-375 significantly inhibited gastric cancer cell proliferation in vitro and in vivo. Forced expression of miR-375 in gastric cancer cells significantly reduced the protein level of Janus kinase 2 (JAK2) and repressed the activity of a luciferase reporter carrying the 3'-untranslated region of JAK2, which was abolished by mutation of the predicted miR-375-binding site, indicating that JAK2 may be a miR-375 target gene. Either inhibition of JAK2 activity by AG490 or silencing of JAK2 by RNAi suppressed gastric cancer cell proliferation resembling that of miR-375 overexpression. Moreover, ectopic expression of JAK2 can partially reverse the inhibition of cell proliferation caused by miR-375. Finally, we found a significant inverse correlation between miR-375 expression and JAK2 protein level in gastric cancer. Thus, these data suggest that miR-375 may function as a tumor suppressor to regulate gastric cancer cell proliferation potentially by targeting the JAK2 oncogene, implicating a role of miR-375 in the pathogenesis of gastric cancer.
Journal Article
Advancement of Phenoxypyridine as an Active Scaffold for Pesticides
2022
Phenoxypyridine, the bioisostere of diaryl ethers, has been widely introduced into bioactive molecules as an active scaffold, which has different properties from diaryl ethers. In this paper, the bioactivities, structure-activity relationships, and mechanism of compounds containing phenoxypyridine were summarized, which may help to explore the lead compounds and discover novel pesticides with potential bioactivities.
Journal Article
Virtual elastography ultrasound via generative adversarial network for breast cancer diagnosis
2023
Elastography ultrasound (EUS) imaging is a vital ultrasound imaging modality. The current use of EUS faces many challenges, such as vulnerability to subjective manipulation, echo signal attenuation, and unknown risks of elastic pressure in certain delicate tissues. The hardware requirement of EUS also hinders the trend of miniaturization of ultrasound equipment. Here we show a cost-efficient solution by designing a deep neural network to synthesize virtual EUS (V-EUS) from conventional B-mode images. A total of 4580 breast tumor cases were collected from 15 medical centers, including a main cohort with 2501 cases for model establishment, an external dataset with 1730 cases and a portable dataset with 349 cases for testing. In the task of differentiating benign and malignant breast tumors, there is no significant difference between V-EUS and real EUS on high-end ultrasound, while the diagnostic performance of pocket-sized ultrasound can be improved by about 5% after V-EUS is equipped.
The current use of elastography ultrasound faces challenges, including vulnerability to subjective manipulation, echo signal attenuation, unknown risks of elastic pressure and high imaging hardware cost. Here, the author shows a virtual elastography to empower low-end ultrasound devices with state-of-art elastography function.
Journal Article
CRISPR-Mediated Knockout of the ABCC2 Gene in Ostrinia furnacalis Confers High-Level Resistance to the Bacillus thuringiensis Cry1Fa Toxin
2020
The adoption of transgenic crops expressing Bacillus thuringiensis (Bt) insecticidal crystalline (Cry) proteins has reduced insecticide application, increased yields, and contributed to food safety worldwide. However, the efficacy of transgenic Bt crops is put at risk by the adaptive resistance evolution of target pests. Previous studies indicate that resistance to Bacillus thuringiensis Cry1A and Cry1F toxins was genetically linked with mutations of ATP-binding cassette (ABC) transporter subfamily C gene ABCC2 in at least seven lepidopteran insects. Several strains selected in the laboratory of the Asian corn borer, Ostrinia furnacalis, a destructive pest of corn in Asian Western Pacific countries, developed high levels of resistance to Cry1A and Cry1F toxins. The causality between the O. furnacalis ABCC2 (OfABCC2) gene and resistance to Cry1A and Cry1F toxins remains unknown. Here, we successfully generated a homozygous strain (OfC2-KO) of O. furnacalis with an 8-bp deletion mutation of ABCC2 by the CRISPR/Cas9 approach. The 8-bp deletion mutation results in a frame shift in the open reading frame of transcripts, which produced a predicted protein truncated in the TM4-TM5 loop region. The knockout strain OfC2-KO showed much more than a 300-fold resistance to Cry1Fa, and low levels of resistance to Cry1Ab and Cry1Ac (<10-fold), but no significant effects on the toxicities of Cry1Aa and two chemical insecticides (abamectin and chlorantraniliprole), compared to the background NJ-S strain. Furthermore, we found that the Cry1Fa resistance was autosomal, recessive, and significantly linked with the 8-bp deletion mutation of OfABCC2 in the OfC2-KO strain. In conclusion, in vivo functional investigation demonstrates the causality of the OfABCC2 truncating mutation with high-level resistance to the Cry1Fa toxin in O. furnacalis. Our results suggest that the OfABCC2 protein might be a functional receptor for Cry1Fa and reinforces the association of this gene to the mode of action of the Cry1Fa toxin.
Journal Article
Energy Homeostasis Control in Drosophila Adipokinetic Hormone Mutants
by
Kühnlein, Ronald P
,
Hehlert, Philip
,
Xu, Yanjun
in
Animals
,
Carbohydrates
,
CRISPR-Cas Systems
2015
Maintenance of biological functions under negative energy balance depends on mobilization of storage lipids and carbohydrates in animals. In mammals, glucagon and glucocorticoid signaling mobilizes energy reserves, whereas adipokinetic hormones (AKHs) play a homologous role in insects. Numerous studies based on AKH injections and correlative studies in a broad range of insect species established the view that AKH acts as master regulator of energy mobilization during development, reproduction, and stress. In contrast to AKH, the second peptide, which is processed from the Akh encoded prohormone [termed “adipokinetic hormone precursor-related peptide” (APRP)] is functionally orphan. APRP is discussed as ecdysiotropic hormone or as scaffold peptide during AKH prohormone processing. However, as in the case of AKH, final evidence for APRP functions requires genetic mutant analysis. Here we employed CRISPR/Cas9-mediated genome engineering to create AKH and AKH plus APRP-specific mutants in the model insect Drosophila melanogaster. Lack of APRP did not affect any of the tested steroid-dependent processes. Similarly, Drosophila AKH signaling is dispensable for ontogenesis, locomotion, oogenesis, and homeostasis of lipid or carbohydrate storage until up to the end of metamorphosis. During adulthood, however, AKH regulates body fat content and the hemolymph sugar level as well as nutritional and oxidative stress responses. Finally, we provide evidence for a negative autoregulatory loop in Akh gene regulation.
Journal Article
Unveiling charge utilization mechanisms in ferroelectric for water splitting
2025
Charge separation is a critical process for achieving high photocatalytic efficiency, and ferroelectrics hold significant potential for facilitating effective charge separation. However, few studies have demonstrated substantial photocatalytic activity in these materials. In this study, we demonstrate that in ferroelectric PbTiO
3
, surface Ti vacancy defects near the positively polarized facets impede photocatalytic performance by trapping electrons and inducing their recombination. To tackle this issue, we selectively grew SrTiO
3
nanolayers on the polarized facets PbTiO
3
, effectively mitigating interface Ti defects. This modification establishes a efficient electron transfer pathway at the interface between the positively polarized facets and the cocatalyst, extending the electron lifetime from 50 microseconds to the millisecond scale and significantly increasing electron participation in water-splitting reactions. Consequently, the apparent quantum yield for overall water splitting achieves the highest values reported to date for ferroelectric photocatalytic materials. This work provides an effective strategy for designing advanced ferroelectric photocatalytic systems.
Ferroelectrics, which exhibit excellent charge separation ability, suffer from poor photocatalytic activity. The authors unveil the limitations in charge extraction and offer strategies to design high-performance photocatalysts by eliminating surface defects.
Journal Article
Down-regulation of miR-141 in gastric cancer and its involvement in cell growth
2009
Purpose Human microRNA-141 (miR-141), a member of the miR-200 family, has been reported to be associated with various human malignancies. However, it remains unknown whether miR-141 is involved in the pathogenesis of gastric cancer. Therefore, we examined the expression of miR-141 in gastric cancer tissues and the effect of miR-141 overexpression on cancer cell proliferation. Methods The expression level of miR-141 in 35 pair-matched gastric neoplastic and adjacent non-neoplastic tissues, and in 5 gastric cancer cell lines were examined by quantitative real-time PCR. The growth of MGC-803 cells transfected with miRNA precursor was examined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazoliumbromide) assay. Results MiR-141 was significantly down-regulated in 80% (28/35) of primary gastric cancer tissues compared with pair-matched adjacent non-tumor tissues (P < 0.01). The expression of miR-141 was also found to be substantially reduced in several human gastric cancer cell lines such as MGC-803, HGC-27, SGC-7901 and BGC-823 cells. Overexpression of miR-141 with its precursors significantly inhibited the proliferation of gastric cancer cells. Conclusions These results suggest that miR-141 may be involved in the development of gastric cancer through its inhibitory effect on cell proliferation.
Journal Article