Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
41
result(s) for
"Xu Pingwei"
Sort by:
Glycogen metabolism regulates macrophage-mediated acute inflammatory responses
Our current understanding of how sugar metabolism affects inflammatory pathways in macrophages is incomplete. Here, we show that glycogen metabolism is an important event that controls macrophage-mediated inflammatory responses. IFN-γ/LPS treatment stimulates macrophages to synthesize glycogen, which is then channeled through glycogenolysis to generate G6P and further through the pentose phosphate pathway to yield abundant NADPH, ensuring high levels of reduced glutathione for inflammatory macrophage survival. Meanwhile, glycogen metabolism also increases UDPG levels and the receptor P2Y
14
in macrophages. The UDPG/P2Y
14
signaling pathway not only upregulates the expression of STAT1 via activating RARβ but also promotes STAT1 phosphorylation by downregulating phosphatase TC45. Blockade of this glycogen metabolic pathway disrupts acute inflammatory responses in multiple mouse models. Glycogen metabolism also regulates inflammatory responses in patients with sepsis. These findings show that glycogen metabolism in macrophages is an important regulator and indicate strategies that might be used to treat acute inflammatory diseases.
Glycogen can be metabolized via glycogenolysis and the pentose phosphate pathway as well as into the production of UDP glucose, which when secreted can bind the P2Y
14
receptor. Here the authors show how these glycogen metabolism pathways contribute to proinflammatory macrophage activation and susceptibility to sepsis.
Journal Article
Soft fibrin gels promote selection and growth of tumorigenic cells
2012
The identification of stem-cell-like cancer cells through conventional methods that depend on stem cell markers is often unreliable. We developed a mechanical method for selecting tumorigenic cells by culturing single cancer cells in fibrin matrices of ~100 Pa in stiffness. When cultured within these gels, primary human cancer cells or single cancer cells from mouse or human cancer cell lines grew within a few days into individual round colonies that resembled embryonic stem cell colonies. Subcutaneous or intravenous injection of 10 or 100 fibrin-cultured cells in syngeneic or severe combined immunodeficiency mice led to the formation of solid tumours at the site of injection or at the distant lung organ much more efficiently than control cancer cells selected using conventional surface marker methods or cultured on conventional rigid dishes or on soft gels. Remarkably, as few as ten such cells were able to survive and form tumours in the lungs of wild-type non-syngeneic mice.
Conventional methods for the selection of tumorigenic cells from cancer cell lines rely on stem-cell markers. It is now shown that soft fibrin gels promote the growth of colonies of tumorigenic cells from single cancer cells from mouse or human cancer cell lines, and that as few as ten fibrin-cultured cells can lead to the formation of tumours in mice more efficiently than marker-selected cells.
Journal Article
Ketogenesis-generated β-hydroxybutyrate is an epigenetic regulator of CD8+ T-cell memory development
2020
Glycogen has long been considered to have a function in energy metabolism. However, our recent study indicated that glycogen metabolism, directed by cytosolic phosphoenolpyruvate carboxykinase Pck1, controls the formation and maintenance of CD8+ memory T (Tmem) cells by regulating redox homeostasis1. This unusual metabolic program raises the question of how Pck1 is upregulated in CD8+ Tmem cells. Here, we show that mitochondrial acetyl coenzyme A is diverted to the ketogenesis pathway, which indirectly regulates Pck1 expression. Mechanistically, ketogenesis-derived β-hydroxybutyrate is present in CD8+ Tmem cells; β-hydroxybutyrate epigenetically modifies Lys 9 of histone H3 (H3K9) of Foxo1 and Ppargc1a (which encodes PGC-1α) with β-hydroxybutyrylation, upregulating the expression of these genes. As a result, FoxO1 and PGC-1α cooperatively upregulate Pck1 expression, therefore directing the carbon flow along the gluconeogenic pathway to glycogen and the pentose phosphate pathway. These results reveal that ketogenesis acts as an unusual metabolic pathway in CD8+ Tmem cells, linking epigenetic modification required for memory development.Zhang et al. show that ketogenesis-derived β-hydroxybutyrate (BHB) epigenetically modifies H3K9 of Foxo1 and Ppargc1a to regulate Pck1, which in turn controls metabolic flux and CD8+ memory T-cell development.
Journal Article
Reversing drug resistance of soft tumor-repopulating cells by tumor cell-derived chemotherapeutic microparticles
by
Jingwei Ma Yi Zhang Ke Tang Huafeng Zhang Xiaonan Yin Yong Li Pingwei Xu Yanling Sun Ruihua Ma Tiantian Ji Junwei Chen Shuang Zhang Tianzhen Zhang Shunqun Luo Yang Jin Xiuli Luo Chengyin Li Hongwei Gong Zhixiong Long Jinzhi Lu Zhuowei Hu Xuetao Cao Ning Wang Xiangliang Yang Bo Huang
in
631/61/51
,
631/61/54
,
631/67/1059/2326
2016
Developing novel approaches to reverse the drug resistance of tumor-repopulating cells (TRCs) or stem cell-like cancer cells is an urgent clinical need to improve outcomes of cancer patients. Here we show an innovative approach that reverses drug resistance of TRCs using tumor cell-derived microparficles (T-MPs) containing anti-tumor drugs. TRCs, by virtue of being more deformable than differentiated cancer cells, preferentially take up T-MPs that release anti-tumor drugs after entering cells, which in turn lead to death of TRCs. The underlying mechanisms include interfering with drug efflux and promoting nuclear entry of the drugs. Our findings demonstrate the importance of tu- mor cell softness in uptake of T-MPs and effectiveness of a novel approach in reversing drug resistance of TRCs with promising clinical applications.
Journal Article
The success of the tumor immunotherapy: neutrophils from bench to beside
2025
The present immune therapy was focused on the immune checkpoint blockade or Chimeric Antigen Receptor T-Cell Immunotherapy (CART) transfer, but how to activate the innate immune system to antitumor still lags out. Neutrophils are the most abundant circulating leukocytes in human, and heterogeneous neutrophils have been increasingly recognized as important players in tumor progression. They play double “edge-sward” by either supporting or suppressing the tumor growth, including driving angiogenesis, extracellular matrix remodeling to promote tumor growth, participating in antitumor adaptive immunity, or killing tumor cells directly to inhibit the tumor growth. The complex role of neutrophils in various tumors depends on the tumor microenvironment (TME) they are located, and emerging evidence has suggested that neutrophils may determine the success of tumor immunotherapy in the context of the immune checkpoint blockade, innate immune training, or drug-loaded extracellular microvesicles therapy, which makes them become an exciting target for tumor immunotherapy, but still with challenges. Here, we summarize the latest insights on how to activate neutrophils in antitumor immunity and discuss the advances of neutrophil-targeted immunotherapy strategies.
Journal Article
Macrophages reprogrammed by lung cancer microparticles promote tumor development via release of IL-1β
2020
Despite their mutual antagonism, inflammation and immunosuppression coexist in tumor microenvironments due to tumor and immune cell interactions, but the underlying mechanism remains unclear. Previously, we showed that tumor cell-derived microparticles induce an M2 phenotype characterized by immunosuppression in tumor-infiltrating macrophages. Here, we further showed that lung cancer microparticles (L-MPs) induce macrophages to release a key proinflammatory cytokine, IL-1β, thus promoting lung cancer development. The underlying mechanism involves the activation of TLR3 and the NLRP3 inflammasome by L-MPs. More importantly, tyrosine kinase inhibitor treatment-induced L-MPs also induce human macrophages to release IL-1β, leading to a tumor-promoting effect in a humanized mouse model. These findings demonstrated that in addition to their anti-inflammatory effect, L-MPs induce a proinflammatory phenotype in tumor-infiltrating macrophages, promoting the development of inflammatory and immunosuppressive tumor microenvironments.
Journal Article
Microstructure and Anisotropy of the Mechanical Properties of 316L Stainless Steel Fabricated by Selective Laser Melting
2021
Significant anisotropy in mechanical properties was observed in 316L stainless steel (SS) that was subjected to selective laser melting (SLM) to produce a hierarchical structure, composed of molten pool, columnar grains, and a cellular substructure. Such anisotropy was induced by the geometric relationship between the boundary of the molten pool and the tensile force. The in situ tensile test showed initial deformation rapidly occurred at the boundary of the molten pool, followed by strain localization, and a lower ductility was obtained when loaded in the longitudinal direction (perpendicular to the molten pool). By contrast, the deformation was significantly constrained because of the geometry of the boundary of the molten pool, and substantial deformation occurred in the cellular substructure during loading in transverse direction (parallel to the molten pool). Finally, the quantitative analysis revealed that the high-level strength was attributed to the high-density dislocations and the fine cellular substructure.
Journal Article
Methotrexate-loaded tumour-cell-derived microvesicles can relieve biliary obstruction in patients with extrahepatic cholangiocarcinoma
2020
Most patients with cholangiocarcinoma (CCA) develop extrahepatic malignant biliary obstructions, which require palliative drainage to normalize bilirubin levels and to improve the patients’ overall survival. Here, we report that the infusion of methotrexate-containing plasma-membrane microvesicles derived from apoptotic human tumour cells into the bile-duct lumen of patients with extrahepatic CCA mobilized and activated neutrophils and relieved biliary obstruction in 25% of the patients. Neutrophil recruitment by the microvesicles was associated with an increase in uridine diphosphate glucose and complement C5, and led to the degradation of the stromal barrier of CCA. The microvesicles induced pyroptosis of CCA cells through a gasdermin E-dependent pathway, and their intracellular contents released upon CCA-cell death activated patient-derived macrophages into producing proinflammatory cytokines, which attracted a secondary wave of neutrophils to the tumour site. Our findings suggest a possible treatment for the alleviation of obstructive extrahepatic CCA with few adverse effects, and highlight the potential of tumour-cell-derived microvesicles as drug carriers for antitumour therapies.
Methotrexate-loaded tumour-cell-derived microvesicles induce neutrophil-mediated antitumour activity and can relieve biliary obstructions in patients with extrahepatic cholangiocarcinoma.
Journal Article
Switch of glycolysis to gluconeogenesis by dexamethasone for treatment of hepatocarcinoma
by
Tang, Ke
,
Ye, Duyun
,
Zhang, Huafeng
in
11-beta-Hydroxysteroid Dehydrogenase Type 1 - genetics
,
11-beta-Hydroxysteroid Dehydrogenase Type 1 - metabolism
,
11-beta-Hydroxysteroid Dehydrogenase Type 2 - genetics
2013
Gluconeogenesis is a fundamental feature of hepatocytes. Whether this gluconeogenic activity is also present in malignant hepatocytes remains unexplored. A better understanding of this biological process may lead to novel therapeutic strategies. Here we show that gluconeogenesis is not present in mouse or human malignant hepatocytes. We find that two critical enzymes 11β-HSD1 and 11β-HSD2 that regulate glucocorticoid activities are expressed inversely in malignant hepatocytes, resulting in the inactivation of endogenous glucocorticoids and the loss of gluconeogenesis. In patients’ hepatocarcinoma, the expression of 11β-HSD1 and 11β-HSD2 is closely linked to prognosis and survival. Dexamethasone, an active form of synthesized glucocorticoids, is capable of restoring gluconeogenesis in malignant cells by bypassing the abnormal regulation of 11β-HSD enzymes, leading to therapeutic efficacy against hepatocarcinoma. These findings clarify the molecular basis of malignant hepatocyte loss of gluconeogenesis and suggest new therapeutic strategies.
Hepatocytes use gluconeogenesis to produce glucose, but whether this process is altered in hepatocellular carcinoma (HCC) is unclear. Here, the loss of gluconeogenesis in HCC and altered glucocorticoid regulation is demonstrated and glucocorticoid treatment is shown to reduce tumour burden.
Journal Article