Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
40 result(s) for "Xue, Bohan"
Sort by:
Mesenchymal Stem Cell-Derived Exosomes Reduce A1 Astrocytes via Downregulation of Phosphorylated NFκB P65 Subunit in Spinal Cord Injury
Background/Aims: Neurotoxic A1 astrocytes are induced by inflammation after spinal cord injury (SCI), and the inflammation-related Nuclear Factor Kappa B (NFκB) pathway may be related to A1-astrocyte activation. Mesenchymal stem cell (MSC) transplantation is a promising therapy for SCI, where transplanted MSCs exhibit anti-inflammatory effects by downregulating proinflammatory factors, such as Tumor Necrosis Factor (TNF)-α and NFκB. MSC-exosomes (MSC-exo) reportedly mimic the beneficial effects of MSCs. Therefore, in this study, we investigated whether MSCs and MSC-exo exert inhibitory effects on A1 astrocytes and are beneficial for recovery after SCI. Methods: The effects of MSC and MSC-exo on SCIinduced A1 astrocytes, and the potential mechanisms were investigated in vitro and in vivo using immunofluorescence and western blot. In addition, we assessed the histopathology, levels of proinflammatory cytokines and locomotor function to verify the effects of MSC and MSC-exo on SCI rats. Results: MSC or MSC-exo co-culture reduced the proportion of SCIinduced A1 astrocytes. Intravenously-injected MSC or MSC-exo after SCI significantly reduced the proportion of A1 astrocytes, the percentage of p65 positive nuclei in astrocytes, and the percentage of TUNEL-positive cells in the ventral horn. Additionally, we observed decreased lesion area and expression of TNFα, Interleukin (IL)-1α and IL-1β, elevated expression of Myelin Basic Protein (MBP), Synaptophysin (Syn) and Neuronal Nuclei (NeuN), and improved Basso, Beattie & Bresnahan (BBB) scores and inclined-plane-test angle. In vitro assay showed that MSC and MSC-exo reduced SCI-induced A1 astrocytes, probably via inhibiting the nuclear translocation of the NFκB p65. Conclusion: MSC and MSC-exo reduce SCI-induced A1 astrocytes, probably via inhibiting nuclear translocation of NFκB p65, and exert antiinflammatory and neuroprotective effects following SCI, with the therapeutic effect of MSCexo comparable with that of MSCs when applied intravenously.
Arsenic and nutrient absorption characteristics and antioxidant response in different leaves of two ryegrass (Lolium perenne) species under arsenic stress
Arsenic (As), a heavy metal element, causes soil environmental concerns in many parts of the world, and ryegrass has been considered as an effective plant species for bioremediation of heavy metal pollution including As. This study was designed to investigate As content, nutrient absorption and antioxidant enzyme activity associated with As tolerance in the mature leaves, expanded leaves and emerging leaves of perennial ryegrass (Lolium perenne) and annual ryegrass (Lolium multiflorum) under 100 mg·kg-1 As treatment. The contents of As, calcium (Ca), magnesium (Mg), manganese (Mn) in the leaves of both ryegrass species were greatest in the mature leaves and least in the emerging leaves. The nitrogen (N), phosphorus (P), potassium (K) contents of both ryegrass species were greatest in the emerging leaves and least in the mature leaves. The As treatment reduced biomass more in the mature leaves and expanded leaves relative to the emerging leaves for annual ryegrass and reduced more in emerging leaves relative to the mature and expanded leaves for perennial ryegrass. Perennial ryegrass had higher As content than annual ryegrass in all three kinds of leaves. The As treatment increased hydrogen peroxide (H2O2) in expanded leaves of two ryegrass species, relative to the control. The As treatment increased the ascorbate peroxidase (APX) activity in the expanded leaves of perennial ryegrass and the mature leaves of annual ryegrass, the catalase (CAT) activity in the mature and expanded leaves of perennial ryegrass and the emerging leaves of annual ryegrass, relative to the control. The As treatment reduced peroxidase (POD) activity in all three kinds of leaves of annual ryegrass and superoxide dismutase (SOD) activity in expanded leaves of perennial ryegrass, relative to the control. The results of this study suggest that As tolerance may vary among different ages of leaf and reactive oxygen species (ROS) and antioxidant enzyme activity may be associated with As tolerance in the ryegrass.
Effects of cutting frequency of tall fescue on cadmium form in soil and cadmium enrichment in the plant
Cutting is a common practice for turfgrass culture and maintenance, and it may affect cadmium (Cd) uptake and enrichment due to the removal and regrowth of aboveground parts. The objective of this study was to determine how cutting frequency affects Cd form in the soil and its enrichment and distribution in clippings, stubble and roots. In this study, ‘K‐31’ tall fescue (Festuca elata L.) plants were grown in soils containing different amounts of Cd (0, 5, 25 and 50 mg kg−1) and cut at three different frequencies (no cutting, one cutting, two cuttings and five cuttings in two weeks). The cutting treatment caused a significant decrease in the soil pH, and it promoted Cd absorption by roots and Cd transfer to stubble. Increasing the cutting frequency increased acid‐soluble and reducible Cd content in soil, and the Cd content in the stubble and roots increased significantly and peaked at five cuttings. Cutting treatment exacerbated changes in plant ultrastructure under Cd stress as the chloroplasts of clippings swelled and the number of plastoglobuli in chloroplasts increased. Our study demonstrated that cutting frequency affects the conversion of Cd forms in the soil, promotes Cd absorption in roots, promotes Cd transport to stubble and exacerbates Cd stress on plants.
Arsenic and nutrient absorption characteristics and antioxidant response in different leaves of two ryegrass
Arsenic (As), a heavy metal element, causes soil environmental concerns in many parts of the world, and ryegrass has been considered as an effective plant species for bioremediation of heavy metal pollution including As. This study was designed to investigate As content, nutrient absorption and antioxidant enzyme activity associated with As tolerance in the mature leaves, expanded leaves and emerging leaves of perennial ryegrass (Lolium perenne) and annual ryegrass (Lolium multiflorum) under 100 mg·kg.sup.-1 As treatment. The contents of As, calcium (Ca), magnesium (Mg), manganese (Mn) in the leaves of both ryegrass species were greatest in the mature leaves and least in the emerging leaves. The nitrogen (N), phosphorus (P), potassium (K) contents of both ryegrass species were greatest in the emerging leaves and least in the mature leaves. The As treatment reduced biomass more in the mature leaves and expanded leaves relative to the emerging leaves for annual ryegrass and reduced more in emerging leaves relative to the mature and expanded leaves for perennial ryegrass. Perennial ryegrass had higher As content than annual ryegrass in all three kinds of leaves. The As treatment increased hydrogen peroxide (H.sub.2 O.sub.2) in expanded leaves of two ryegrass species, relative to the control. The As treatment increased the ascorbate peroxidase (APX) activity in the expanded leaves of perennial ryegrass and the mature leaves of annual ryegrass, the catalase (CAT) activity in the mature and expanded leaves of perennial ryegrass and the emerging leaves of annual ryegrass, relative to the control. The As treatment reduced peroxidase (POD) activity in all three kinds of leaves of annual ryegrass and superoxide dismutase (SOD) activity in expanded leaves of perennial ryegrass, relative to the control. The results of this study suggest that As tolerance may vary among different ages of leaf and reactive oxygen species (ROS) and antioxidant enzyme activity may be associated with As tolerance in the ryegrass.
Signaling pathways in obesity: mechanisms and therapeutic interventions
Obesity is a complex, chronic disease and global public health challenge. Characterized by excessive fat accumulation in the body, obesity sharply increases the risk of several diseases, such as type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease, and is linked to lower life expectancy. Although lifestyle intervention (diet and exercise) has remarkable effects on weight management, achieving long-term success at weight loss is extremely challenging, and the prevalence of obesity continues to rise worldwide. Over the past decades, the pathophysiology of obesity has been extensively investigated, and an increasing number of signal transduction pathways have been implicated in obesity, making it possible to fight obesity in a more effective and precise way. In this review, we summarize recent advances in the pathogenesis of obesity from both experimental and clinical studies, focusing on signaling pathways and their roles in the regulation of food intake, glucose homeostasis, adipogenesis, thermogenesis, and chronic inflammation. We also discuss the current anti-obesity drugs, as well as weight loss compounds in clinical trials, that target these signals. The evolving knowledge of signaling transduction may shed light on the future direction of obesity research, as we move into a new era of precision medicine.
Meta-Learning Enhanced Trade Forecasting: A Neural Framework Leveraging Efficient Multicommodity STL Decomposition
In the dynamic global trade environment, accurately predicting trade values of diverse commodities is challenged by unpredictable economic and political changes. This study introduces the Meta-TFSTL framework, an innovative neural model that integrates Meta-Learning Enhanced Trade Forecasting with efficient multicommodity STL decomposition to adeptly navigate the complexities of forecasting. Our approach begins with STL decomposition to partition trade value sequences into seasonal, trend, and residual elements, identifying a potential 10-month economic cycle through the Ljung–Box test. The model employs a dual-channel spatiotemporal encoder for processing these components, ensuring a comprehensive grasp of temporal correlations. By constructing spatial and temporal graphs leveraging correlation matrices and graph embeddings and introducing fused attention and multitasking strategies at the decoding phase, Meta-TFSTL surpasses benchmark models in performance. Additionally, integrating meta-learning and fine-tuning techniques enhances shared knowledge across import and export trade predictions. Ultimately, our research significantly advances the precision and efficiency of trade forecasting in a volatile global economic scenario.
Molecular Regulation of Secondary Hair Follicle Stem Cell by S100a4 in Cashmere Goat
Secondary hair follicle stem cells (HFSCs) are essential for cashmere fiber regeneration, yet the molecular mechanisms governing their activation and lineage progression remain poorly understood. Here, we identify S100a4 as a key regulator of secondary HFSCs in cashmere goat. S100a4 expression peaks during anagen and is markedly enriched in secondary HFSCs relative to hair matrix cells (HMCs), suggesting a role in initiating follicle regeneration. Functional assays show that S100a4 promotes HFSCs into a dynamically regulated state that activates stem cell competence while facilitating differentiation, with overexpression upregulating epidermal and follicular differentiation markers (Ivl, Cux1, K14, Klk5), as well as pluripotency genes (Itga6, Krt15), while knockdown suppresses these programs. Proteomic analysis further reveals direct interactions between S100A4 and keratins critical for hair follicle and epidermal development (KRT5, KRT14, KRT8, KRT18), suggesting a structural and regulatory interface through which S100A4 modulates HFSC fate. Collectively, these results establish S100a4 as a central modulator of secondary HFSC function and provide mechanistic insight into the molecular control of hair follicle regeneration, with potential implications for improving cashmere fiber production.
Stochastic Bidding for Hydro–Wind–Solar Systems in Cross-Provincial Forward–Spot Markets: A Dimensionality-Reduced and Transmission-Aware Framework
Integrated hydro–wind–solar power generators (IPGs) in China face multi-timescale bidding challenges across provincial forward–spot markets, which are further compounded by hydropower nonconvexity and transmission constraints. This study proposes a stochastic optimization model addressing uncertainties from wind–solar generation and spot prices through scenario-based programming, integrating three innovations: average-day dimensionality reduction to harmonize monthly–hourly decisions, local generation function approximation to linearize hydropower operations, and transmission-aware coordination for cross-provincial allocation. Validation on a southwestern China cascade hydropower base transmitting power to eastern load centers shows that the model establishes hydropower-mediated complementarity with daily “solar–daytime, wind–nighttime” and seasonal “wind–winter, solar–summer” patterns. Furthermore, by optimizing cross-provincial power allocation, strategic spot market participation yields 46.4% revenue from 30% generation volume. Additionally, two transmission capacity thresholds are found to guide grid planning: 43.75% capacity marks the economic optimization inflection point, while 75% represents technical saturation. This framework ensures robustness and computational tractability while enabling IPGs to optimize profits and stability in multi-market environments.
Highly heterogeneous epitaxy of flexoelectric BaTiO3-δ membrane on Ge
The integration of complex oxides with a wide spectrum of functionalities on Si, Ge and flexible substrates is highly demanded for functional devices in information technology. We demonstrate the remote epitaxy of BaTiO 3 (BTO) on Ge using a graphene intermediate layer, which forms a prototype of highly heterogeneous epitaxial systems. The Ge surface orientation dictates the outcome of remote epitaxy. Single crystalline epitaxial BTO 3-δ films were grown on graphene/Ge (011), whereas graphene/Ge (001) led to textured films. The graphene plays an important role in surface passivation. The remote epitaxial deposition of BTO 3-δ follows the Volmer-Weber growth mode, with the strain being partially relaxed at the very beginning of the growth. Such BTO 3-δ films can be easily exfoliated and transferred to arbitrary substrates like Si and flexible polyimide. The transferred BTO 3-δ films possess enhanced flexoelectric properties with a gauge factor of as high as 1127. These results not only expand the understanding of heteroepitaxy, but also open a pathway for the applications of devices based on complex oxides. The integration of epitaxial complex oxides on semiconductor and flexible substrates is required but challenging. Here, the authors report the highly heterogeneous epitaxy of transferrable BaTiO 3-δ membrane with enhanced flexoelectricity on Ge (011).
H3K18 lactylation in cancer-associated fibroblasts drives malignant pleural effusion progression via TNFR2+ Treg recruitment
Tumor necrosis factor receptor 2-positive regulatory T (TNFR2 + T reg ) cells, the most suppressive subset of T reg cells, are enriched in malignant pleural effusion (MPE), contributing to disease progression. However, the underlying mechanisms responsible for their accumulation remain unclear. Here we demonstrate that the C–X–C motif chemokine ligand 16 (CXCL16)/C–X–C chemokine receptor type 6 (CXCR6) axis plays a critical role in recruiting TNFR2 + T reg cells to MPE, with cancer-associated fibroblasts serving as the primary source of CXCL16. Mechanistically, under the hypoxic conditions prevailing in the pleural cavity, cancer-associated fibroblasts in MPE undergo glycolysis, which in turn leads to an increase in the production of endogenous lactate. This elevated lactate induces histone H3 lysine 18 lactylation (H3K18la) at the promoter regions of both the CXCL16 gene and its transcription factor forkhead box O3 (FOXO3), which may contribute to CXCL16 transcription. TNFR2 + T reg cells that express high levels of CXCR6, the only receptor for CXCL16, are subsequently recruited into MPE. The infiltration of TNFR2 + T reg cells may reinforce the immunosuppressive milieu of MPE, facilitating disease progression. Collectively, these findings uncover a novel mechanism governing immunosuppression in MPE, providing new insights into potential therapeutic strategies to disrupt this process.