Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
51 result(s) for "Xue, Junqing"
Sort by:
RrYUC10 Positively Regulates Adventitious Root Formation in Rosa rugosa Stem Cuttings
Vegetative propagation through stem cuttings represents the primary mode of reproduction in Rosa species. While numerous studies have reported physiological factors affecting cutting rooting, the genes regulating the formation of adventitious roots in roses have not yet been fully explored and studied. In this study, we demonstrate that Rosa rugosa ‘Feng Hua’ exhibits an indirect rooting pattern, requiring callus formation prior to root primordium differentiation. Phytohormone profiling revealed exceptionally high concentrations of auxin precursors, particularly tryptophan (Trp), in both callus and root tissues. Therefore, we identified and analyzed the members of the YUCCA family, which are the key rate-limiting enzymes in the tryptophan-dependent IAA biosynthesis pathway. A total of 11 RrYUCs family genes were identified, with RT-qPCR analysis showing that RrYUC10 was highly expressed in callus and root tissues. Functional studies confirmed its critical role in adventitious root formation: virus-induced gene silencing (VIGS) of RrYUC10 significantly inhibited AR development, whereas its overexpression enhanced rooting. Our findings have provided a molecular theoretical basis for the rooting of cuttings in roses.
Experimental and Numerical Investigations of Flat Approach Slab–Soil Interaction in Jointless Bridge
In jointless bridges, a grade flat approach slab (GFAS) with the same elevation as the pavement can transfer the girder’s longitudinal deformation to the backfill. However, any cracks and settlement of the pavement usually occur at the end of the GFAS. To address this shortcoming, the buried flat approach slab (BFAS) horizontally embedded at a depth in the backfill was proposed. The complicated flat approach slab–soil interaction (FASSI) of the BFAS has not been systemically investigated. To address this gap, the influence of the FASSI on the mechanical performance of the approach slab and the backfill deformation was investigated in this research to understand the mechanism of the FASSI in absorbing one part of the girder’s longitudinal deformation and transferring the rest to the soil. Experimental tests on the FASSI with different embedded depths under longitudinal displacements were conducted. Numerical parametric analyses were carried out by considering the embedded depths and slab lengths as the parameters based on a finite element model verified using the test results. The results show that load–displacement curves of the FASSI comprise three stages: the elastic stage (approach slab’s displacement was absorbed by sand), the elastoplastic stage (sand deformation was observed), and the failure stage (overall shear failure of the sand was found). The longitudinal displacement transfer mode and vertical deformation distribution mode of the sand were affected by the embedded depth and slab length. With an increase in the embedded depth or a decrease in the slab length, the sand deformation decreases, which is beneficial for avoiding pavement crack risks and improving the pavement evenness. Finally, a simplified calculation formula that can be used to predict the load–displacement curves of the FASSI was proposed. This research provides the theoretical basis for the design and construction of the flat approach slab in jointless bridges.
Experimental Investigations of Seismic Performance of Girder–Integral Abutment–Reinforced-Concrete Pile–Soil Systems
Integral abutment bridges (IABs) have been widely applied in bridge engineering because of their excellent seismic performance, long service life, and low maintenance cost. The superstructure and substructure of an IAB are integrally connected to reduce the possibility of collapse or girders falling during an earthquake. The soil behind the abutment can provide a damping effect to reduce the deformation of the structure under a seismic load. Girders have not been considered in some of the existing published experimental tests on integral abutment–reinforced-concrete (RC) pile (IAP)–soil systems, which may not accurately represent real conditions. A pseudo-static low-cycle test on a girder–integral abutment–RC pile (GIAP)–soil system was conducted for an IAB in China. The experiment’s results for the GIAP specimen were compared with those of the IAP specimen, including the failure mode, hysteretic curve, energy dissipation capacity, skeleton curve, stiffness degradation, and displacement ductility. The test results indicate that the failure modes of both specimens were different. For the IAP specimen, the pile cracked at a displacement of +2 mm, while the abutment did not crack during the test. For the GIAP specimen, the pile cracked at a displacement of −8 mm, and the abutment cracked at a displacement of 50 mm. The failure mode of the specimen changed from severe damage to the pile top under a small displacement to damage to both the abutment and pile top under a large displacement. Compared with the IAP specimen, the initial stiffness under positive horizontal displacement (39.2%), residual force accumulation (22.6%), residual deformation (12.6%), range of the elastoplastic stage in the skeleton curve, and stiffness degradation of the GIAP specimen were smaller; however, the initial stiffness under negative horizontal displacement (112.6%), displacement ductility coefficient (67.2%), average equivalent viscous damping ratio (30.8%), yield load (20.4%), ultimate load (7.8%), and range of the elastic stage in the skeleton curve of the GIAP specimen were larger. In summary, the seismic performance of the GIAP–soil system was better than that of the IAP–soil system. Therefore, to accurately reflect the seismic performance of GIAP–soil systems in IABs, it is suggested to consider the influence of the girder.
Solar Radiation Parameters for Assessing Temperature Distributions on Bridge Cross-Sections
Solar radiation is one of the most important factors influencing the temperature distribution on bridge girder cross-sections. The bridge temperature distribution can be estimated using estimation models that incorporate solar radiation data; however, such data could be cost- or time-prohibitive to obtain. A review of literature was carried out on estimation models for solar radiation parameters, including the global solar radiation, beam solar radiation and diffuse solar radiation. Solar radiation data from eight cities in Fujian Province in southeastern China were obtained on site. Solar radiation models applicable to Fujian, China were proposed and verified using the measured data. The linear Ångström–Page model (based on sunshine duration) can be used to estimate the daily global solar radiation. The Collares-Pereira and Rabl model and the Hottel model can be used to estimate the hourly global solar radiation and the beam solar radiation, respectively. Three bridges were chosen as case study, for which the temperature distribution on girder cross-sections were monitored on site. Finite element models (FEM) of cross-sections of bridge girders were implemented using the Midas program. The temperature–time curves obtained from FEM showed very close agreement with the measured values for summertime. Ignoring the solar radiation effect would result in lower and delayed temperature peaks. However, the influence of solar radiation on the temperature distribution in winter is negligible.
Research on the Internal Thermal Boundary Conditions of Concrete Closed Girder Cross-Sections under Historically Extreme Temperature Conditions
The accuracy of the finite element model (FEM) for concrete closed girder cross-sections is significantly influenced by thermal boundary conditions. The internal thermal boundary conditions can be simulated by inputting the convection heat transfer coefficient and the temperatures inside the cavities or by establishing air elements in the FEM. In order to analyze the influence of different simulation methods for the internal thermal boundary conditions on temperature distributions for concrete closed girder cross-sections, the temperature distributions on the cross-sections of a box girder, small box girders, and adjacent box girders were monitored, and the corresponding FEMs were implemented. By comparing the temperature data obtained from the field test and FEMs, the numerical hourly temperature curves calculated by using the measured temperatures inside the cavities provide the closest agreement with the measured results; however, the measurements of the temperatures on site are cost- and time-prohibitive. When there is a lack of measured temperatures inside the cavities, the numerical hourly temperature curves calculated by establishing air elements in the FEM provide the closest agreement. The influences of different simulation methods for the internal thermal boundary conditions on the highest hourly average effective temperatures and the trends of the vertical temperature gradients for concrete closed girder cross-sections were small. The FEM with air elements can be adopted to analyze the temperature distributions on concrete closed girder cross-sections under historically extreme temperature conditions. It can be predicted that the longitudinal thermal movement of concrete closed girders would be underestimated by considering variations in the one-year measured average effective temperature of the cross-sections or the Chinese-code-specified design effective temperature for the highway bridge structures, which are thus unconservative for engineering applications. The Chinese-code-specified design vertical temperature gradients are conservative for the bridge deck surface and unconservative for the bottom flange.
Severely Damaged Reinforced Concrete Circular Columns Repaired by Turned Steel Rebar and High-Performance Concrete Jacketing with Steel or Polymer Fibers
A new strategy that repairs severely damaged reinforced concrete (RC) columns after an earthquake is proposed as a simpler and quicker solution with respect to the strategies currently available in the literature. The external concrete parts are removed from the column surface along the whole plastic hinge region to uncover the steel reinforcement. The transverse steel is cut away, and each longitudinal rebar is locally substituted by steel rebar segments connected by welding connections to the original undamaged rebar pieces outside the intervention zone. The new rebar segments have a reduced diameter achieved by turning to ensure plastic deformation only in the plastic hinge, protecting the original rebar and the welding connections. The connection is specifically designed to be effective and simple, and is directly realized on column reinforcement. Finally, the removed concrete is restored by a jacket built with high-performance concrete with steel or polymer fibers. The use of concrete with high volume fraction of polymer fibers to repair the column is investigated for the first time in this paper. This concrete was characterized by compression and flexural tests in the laboratory and its mechanical characteristics were compared with those of the concrete with steel fibers, which are being increasingly used in construction. The repair strategy was applied to two RC columns (1:6 scaled bridge piers), tested by asymmetric cyclic tests. The results show that the column strength, stiffness, and ductility were restored, and the energy dissipation capacity improved. The experimental evidence was investigated by fiber models in OpenSees.
Geometrical Parametric Study on Steel Beams Exposed to Solar Radiation
A finite element thermal analysis was conducted in this study with the aim of evaluating the influence of the geometrical parameters of steel sections on their thermal response under solar radiation. Four W12 and W24 standard steel beams were investigated under the solar irradiation conditions of a sunny summer day. The finite element analysis was carried out using COMSOL Multiphysics considering the Sun’s movement from sunrise to sunset, reflected radiation from the ground, surface convection of air and long wave radiation as the main boundary thermal loads. The temperature-time variation at different locations in the sections, vertical temperature distributions, temperature gradient distributions and thermal stress distributions were investigated. The results showed that the daily maximum temperatures, temperature variation, temperature and temperature gradient distributions and thermal stresses are influenced by the geometry of the steel section. The flange width and flange thickness were found to be the controlling parameters during the noon hours, while these parameters in addition to web depth control the shading effect during the afternoon. On the other hand, web thickness affects the temperature of webs at sunrise and sunset times. Geometrical ratios like Wf/H, Wf/tf2 and 2Wf/Htf were the most influential parameters on temperatures, temperature gradients and thermal stresses of steel beams subjected to solar radiation. The investigated section with the maximum Wf/tf2 value of 0.96 (W12 × 58) recorded the highest top-surface noon temperature, while section W24 × 84 with the lowest Wf/tf2 value of 0.60 exhibited the lowest temperature.
Probabilistic formulation for the q-factor of piles with damping pre-hole
The flexibility of the foundation system significantly affects the seismic and operational performance of integral abutment bridges (IAB). The so-called pile isolation system can lead to higher flexibility in pile foundations. It consists in backfilling the pile hole with high-damping materials up to a certain depth from the surface level. However, the impact of this solution in increasing the lateral flexibility and reducing the seismic demand strongly depends on the scale factor and pile diameter. Most investigations on this topic are based on experimental tests on scaled pile specimens. This paper explores the pile isolation system’s effectiveness by conducting a multivariate sensitivity analysis of the seismic demand of an IAB structural archetype. The IAB archetype is modelled as a Winkler beam with a piece-wise definition of the subgrade stiffness and equivalent viscous damping, simulating the responses of the soil and high-damping particles. The simulated data are then used to calibrate a probabilistic formulation of the seismic demand reduction due to the pre-hole. The formulation, calibrated following a Bayesian approach, is used to derive estimates of the q -factor associated with the damping pre-hole for possible use in engineering practice. The analyses demonstrate that pile isolation with high-damping material can be effective but possesses a limited dissipating capacity, with a seismic reduction factor of approximately 1 and 2.
Adaptive form-finding method for form-fixed spatial network structures
An effective form-finding method for form-fixed spatial network structures is presented in this paper. The adaptive form-finding method is introduced along with the example of designing an ellipsoidal network dome with bar length variations being as small as possible. A typical spherical geodesic network is selected as an initial state, having bar lengths in a limit group number. Next, this network is transformed into the ellipsoidal shape as desired by applying compressions on bars according to the bar length variations caused by transformation. Afterwards, the dynamic relaxation method is employed to explicitly integrate the node positions by applying residual forces. During the form-finding process, the boundary condition of constraining nodes on the ellipsoid surface is innovatively considered as reactions on the normal direction of the surface at node positions, which are balanced with the components of the nodal forces in a reverse direction induced by compressions on bars. The node positions are also corrected according to the fixed-form condition in each explicit iteration step. In the serial results of time history, the optimal solution is found from a time history of states by properly choosing convergence criteria, and the presented form-finding procedure is proved to be applicable for form-fixed problems.
The novel gene BrMYB2, located on chromosome A07, with a short intron 1 controls the purple-head trait of Chinese cabbage (Brassica rapa L.)
Anthocyanins are important secondary metabolites in plants, but information on anthocyanin biosynthesis mechanisms in Chinese cabbage is limited. The new purple head Chinese cabbage cultivar 11S91 was analyzed, and an R2R3-MYB regulatory gene BrMYB2 , located on chromosome A07, controlling the dominant purple-head trait was isolated. High expression of BrMYB2 generated a large accumulation of anthocyanins in 11S91, accompanied by highly upregulated BrTT8 , BrF3 ′ H , BrDFR1 , BrANS1 , BrUGT s, BrAT s, and BrGST s. 11S91 inherited the purple locus from purple trait donor 95T2-5, and they shared consensus CDSs and gDNAs with those of BrMYB2 ( cBrMYB2 and gBrMYB2 ). Two SNPs in cBrMYB2 in 11S91 did not cause loss of function; in addition to several SNPs at both ends of intron 1, a large deletion had occurred in intron 1 of gBrMYB2 in 11S91. Genetic transformation of Arabidopsis showed that gBrMYB2 overexpression lines presented deeper purple color and higher expression than did the c BrMYB2 and c Brmyb2 lines, whereas gBrmyb2 with a long intron 1 did not cause the purple phenotype. We first show that BrMYB2 promotes anthocyanin biosynthesis under the control of the short intron 1 of g BrMYB2 in purple head Chinese cabbage, and gBrmyb2 with a long intron 1 represses anthocyanin production in white head Chinese cabbage. This evidence provides a new understanding of anthocyanin biosynthesis and purple germplasm generation in Brassica vegetables.