Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
7,817 result(s) for "Xue, Ming"
Sort by:
Multi-omics reveals that the rumen microbiome and its metabolome together with the host metabolome contribute to individualized dairy cow performance
Background Recently, we reported that some dairy cows could produce high amounts of milk with high amounts of protein (defined as milk protein yield [MPY]) when a population was raised under the same nutritional and management condition, a potential new trait that can be used to increase high-quality milk production. It is unknown to what extent the rumen microbiome and its metabolites, as well as the host metabolism, contribute to MPY. Here, analysis of rumen metagenomics and metabolomics, together with serum metabolomics was performed to identify potential regulatory mechanisms of MPY at both the rumen microbiome and host levels. Results Metagenomics analysis revealed that several Prevotella species were significantly more abundant in the rumen of high-MPY cows, contributing to improved functions related to branched-chain amino acid biosynthesis. In addition, the rumen microbiome of high-MPY cows had lower relative abundances of organisms with methanogen and methanogenesis functions, suggesting that these cows may produce less methane. Metabolomics analysis revealed that the relative concentrations of rumen microbial metabolites (mainly amino acids, carboxylic acids, and fatty acids) and the absolute concentrations of volatile fatty acids were higher in the high-MPY cows. By associating the rumen microbiome with the rumen metabolome, we found that specific microbial taxa (mainly Prevotella species) were positively correlated with ruminal microbial metabolites, including the amino acids and carbohydrates involved in glutathione, phenylalanine, starch, sucrose, and galactose metabolism. To detect the interactions between the rumen microbiome and host metabolism, we associated the rumen microbiome with the host serum metabolome and found that Prevotella species may affect the host’s metabolism of amino acids (including glycine, serine, threonine, alanine, aspartate, glutamate, cysteine, and methionine). Further analysis using the linear mixed effect model estimated contributions to the variation in MPY based on different omics and revealed that the rumen microbial composition, functions, and metabolites, and the serum metabolites contributed 17.81, 21.56, 29.76, and 26.78%, respectively, to the host MPY. Conclusions These findings provide a fundamental understanding of how the microbiome-dependent and host-dependent mechanisms contribute to varied individualized performance in the milk production quality of dairy cows under the same management condition. This fundamental information is vital for the development of potential manipulation strategies to improve milk quality and production through precision feeding. BxqLxBKbCzpZFnc4fCyo4T Video Abstract
Impact of internet of things (IoT) on inventory management: A literature survey
Background: The advancement of Industry 4.0 technologies has affected every aspect of supply chains. Recently, enterprises have tried to create more value for their businesses by tapping into these new technologies. Warehouses have been one of the most critical sections in a supply chain affected by Industry 4.0 technologies. Methods: By recognizing the role of inventory management in a supply chain and its importance, this paper aims to highlight the impact of IoT technologies on inventory management in supply chains and conducts a comprehensive study to identify the research gap of applying IoT to inventory management. The trend and potential opportunities of applying IoT to inventory management in the Industry 4.0 era are explored by analyzing the literature. Results: Our findings show that the research on this topic is growing in various industries. A broad range of journals is paying particular attention to this topic and publishing more articles in this research direction. Conclusions: Upgrading a supply chain into an integrated supply chain 4.0 is beneficial. Given the changes in fourth-generation technology compared to previous generations, the approach of conventional inventory replenishment policies seems not responsive enough to new technologies and is not able to cope with IoT systems well.
Chemically stable polyarylether-based covalent organic frameworks
The development of crystalline porous materials with high chemical stability is of paramount importance for their practical application. Here, we report the synthesis of polyarylether-based covalent organic frameworks (PAE-COFs) with high crystallinity, porosity and chemical stability, including towards water, owing to the inert nature of their polyarylether-based building blocks. The PAE-COFs are synthesized through nucleophilic aromatic substitution reactions between ortho -difluoro benzene and catechol building units, which form ether linkages. The resulting materials are shown to be stable against harsh chemical environments including boiling water, strong acids and bases, and oxidation and reduction conditions. Their stability surpasses the performance of other known crystalline porous materials such as zeolites, metal–organic frameworks and covalent organic frameworks. We also demonstrate the post-synthetic functionalization of these materials with carboxyl or amino functional groups. The functionalized PAE-COFs combine porosity, high stability and recyclability. A preliminary application of these materials is demonstrated with the removal of antibiotics from water over a wide pH range. The development of porous, crystalline materials with high chemical stability is crucial for their practical uses. Now, polyarylether-based covalent organic frameworks (PAE-COFs) have been synthesized that show high crystallinity and porosity, as well as good stability against harsh chemical environments including boiling water and strong acids and bases.
Climate Change and Human Health: A Review of Allergies, Autoimmunity and the Microbiome
The impact of climate change on human health is a topic of critical importance. While only recently beginning to gain attention, it is clear that immediate action is necessary to minimize this impact. In our review, we will outline a subset of these effects in detail. We will examine how climate change has worsened respiratory allergic disease. We will discuss how climate change has altered antigen exposure, possibly disrupting antigen-specific tolerance by the immune system, leading, in turn, to an increase in the prevalence of immunologic diseases. Finally, we will explore how the loss of biodiversity related to climate change may affect the microbiome, potentially leading to dysbiosis, inflammatory, autoimmune and neurologic diseases.
Subvortices within a Numerically Simulated Tornado: The Role of Unstable Vortex Rossby Waves
Multiple subvortices corresponding to suction vortices in observations are obtained within a simulated tornado for the EF4 tornado case of Funing, China, on 23 June 2016. Within the simulation, the tornado evolves from a one-cell structure with vorticity maximum at its center to a two-cell structure with a ring of vorticity maximum. Five well-defined subvortices develop along the ring. The radial profile of tangential wind across the vorticity ring satisfies the necessary condition of barotropic instability associated with phase-locked, counterpropagating vortex Rossby waves (VRWs) along the ring edges. The phased-locked waves revolve around the parent vortex at a speed less than the maximum azimuthal-mean tangential velocity, agreeing with theoretically predicted VRW phase speed. The radii within which the wave activities are confined are also correctly predicted by the VRW theory where radial group velocity approaches zero. Several other characteristics related to the simulated subvortices agree with VRW theories also. The most unstable azimuthal wavenumber depends on the width and the relative magnitude of vorticity of the vortex ring. Their values estimated from the simulation prior to subvortex formation correctly predict wavenumber 5 as the most unstable. The largest contribution to wave kinetic energy is diagnosed to be from the radial shear of azimuthal wind term, consistent with barotropic instability. Vorticity diagnostics show that vertical vorticity stretching is the primary vorticity source for the intensification and maintenance of the simulated subvortices.
Limit state equation and failure pressure prediction model of pipeline with complex loading
Assessing failure pressure is critical in determining pipeline integrity. Current research primarily concerns the buckling performance of pressurized pipelines subjected to a bending load or axial compression force, with some also looking at the failure pressure of corroded pipelines. However, there is currently a lack of limit state models for pressurized pipelines with bending moments and axial forces. In this study, based on the unified yield criterion, we propose a limit state equation for steel pipes under various loads. The most common operating loads on buried pipelines are bending moment, internal pressure, and axial force. The proposed limit state equation for intact pipelines is based on a three-dimensional pipeline stress model with complex load coupling. Using failure data, we investigate the applicability of various yield criteria in assessing the failure pressure of pipelines with complex loads. We show that the evaluation model can be effectively used as a theoretical solution for assessing the failure pressure in such circumstances and for selecting appropriate yield criteria based on load condition differences. Assessing failure pressure is critical in determining pipeline integrity. In this study, based on the unified yield criterion, authors propose a limit state equation for steel pipes under various loads which can be converted into a series of failure pressure evaluation models for pipeline with different yield criteria.
Effect of co-inoculation with arbuscular mycorrhizal fungi and phosphate solubilizing fungi on nutrient uptake and photosynthesis of beach palm under salt stress environment
Beach plum ( Prunus maritima ) is an ornamental plant, famous for its strong salt and drought stress tolerance. However, the poor growth rate of transplanted seedlings has seriously restricted its application in salinized soil. This study investigated the effects of inoculation with arbuscular mycorrhizal fungus (AMF), Funneliformis mosseae , and phosphate-solubilizing fungus (PSF), Apophysomyces spartima , on the growth, nutrient (N, P, and K) uptake, and photosynthesis of beach plum under saline (170 mM NaCl) and non-saline (0 mM NaCl) conditions. We aimed to find measures to increase the growth rate of beach plum in saline-alkali land and to understand the reasons for this increase. The results showed that salinization adversely affected colonization by AMF but positively increased PSF populations (increased by 33.9–93.3% over non-NaCl treatment). The dual application of AMF and PSF mitigated the effects of salt stress on all growth parameters and nutrient uptake, significantly for roots (dry weight and P and N contents increased by 91.0%, 68.9%, and 40%, respectively, over non-NaCl treatment). Salinization caused significant reductions in net photosynthetic rate ( P n ), stomatal conductance ( G s ), transpiration rate ( E ), and intercellular CO 2 concentration ( C i ) value, while inoculation with AMF and PSF inoculations significantly abated such reductions. The maximum efficiency of photosystem II (PSII) (F v /F m ), the photochemical quenching coefficient (qP), and the nonphotochemical quenching (NPQ) values were affected little by inoculation with AMF, PSF, or both under non-NaCl treatments. However, plants inoculated with AMF and/or PSF had higher F v /F m , qP, and Ф PSII values (increased by 72.5–188.1%) than the control under NaCl treatment, but not a higher NPQ value. We concluded that inoculation with AMF or PSF increased nutrient uptake and improved the gas-exchange and Chl fluorescence parameters of beach plum under salt stress environment. These effects could be strengthened by the combination of AMF and PSF, especially for nutrient uptake, root growth, and P n , thereby alleviating the deleterious effects of NaCl stress on beach plum growth.
Integrated meta-omics reveals new ruminal microbial features associated with feed efficiency in dairy cattle
Background As the global population continues to grow, competition for resources between humans and livestock has been intensifying. Increasing milk protein production and improving feed efficiency are becoming increasingly important to meet the demand for high-quality dairy protein. In a previous study, we found that milk protein yield in dairy cows was associated with the rumen microbiome. The objective of this study was to elucidate the potential microbial features that underpins feed efficiency in dairy cows using metagenomics, metatranscriptomics, and metabolomics. Results Comparison of metagenomic and metatranscriptomic data revealed that the latter was a better approach to uncover the associations between rumen microbial functions and host performance. Co-occurrence network analysis of the rumen microbiome revealed differential microbial interaction patterns between the animals with different feed efficiency, with high-efficiency animals having more and stronger associations than low-efficiency animals. In the rumen of high-efficiency animals, Selenomonas and members of the Succinivibrionaceae family positively interacted with each other, functioning as keystone members due to their essential ecological functions and active carbohydrate metabolic functions. At the metabolic level, analysis using random forest machine learning suggested that six ruminal metabolites (all derived from carbohydrates) could be used as metabolic markers that can potentially differentiate efficient and inefficient microbiomes, with an accuracy of prediction of 95.06%. Conclusions The results of the current study provided new insights into the new ruminal microbial features associated with feed efficiency in dairy cows, which may improve the ability to select animals for better performance in the dairy industry. The fundamental knowledge will also inform future interventions to improve feed efficiency in dairy cows. 2fNfKsiaKwf1Ab-9aEYLYC Video Abstract.
Influence of Synoptic Sea-Breeze Fronts on the Urban Heat Island Intensity in Dallas–Fort Worth, Texas
When assessed using the difference between urban and rural air temperatures, the urban heat island (UHI) is most prominent during the nighttime. Typically, nocturnal UHI intensity is maintained throughout the night. The UHI intensity over Dallas–Fort Worth (DFW), Texas, however, experienced frequent “collapses” (sudden decreases) around midnight during August 2011, while the region was experiencing an intense heat wave. Observational and modeling studies were conducted to understand this unique phenomenon. Sea-breeze passage was found to be ultimately responsible for the collapses of the nocturnal UHI. Sea-breeze circulation developed along the coast of the Gulf of Mexico during the daytime. During the nighttime, the sea-breeze circulation was advected inland (as far as ~400 km) by the low-level jet-enhanced southerly flow, maintaining the characteristics of sea-breeze fronts, including the enhanced wind shear and vertical mixing. Ahead of the front, surface radiative cooling enhanced the near-surface temperature inversion in rural areas through the night with calm winds. During the frontal passage (around midnight at DFW), the enhanced vertical mixing at the leading edge of the fronts brought warmer air to the surface, leading to rural surface warming events. In contrast, urban effects led to a nearly neutral urban boundary layer. The enhanced mechanical mixing associated with sea-breeze fronts, therefore, did not increase urban surface temperature. The different responses to the sea-breeze frontal passages between rural (warming) and urban areas (no warming) led to the collapse of the UHI. The inland penetration of sea-breeze fronts at such large distances from the coast and their effects on UHI have not been documented in the literature.