Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
12
result(s) for
"Yamaguchi, Erina"
Sort by:
Booster COVID-19 mRNA vaccination ameliorates impaired B-cell but not T-cell responses in older adults
2024
Age-associated differences in the effect of repetitive vaccination, particularly on memory T-cell and B-cell responses, remain unclear. While older adults (aged ≥65 years) exhibited enhanced IgG responses following COVID-19 mRNA booster vaccination, they produced fewer spike-specific circulating follicular helper T cells-1 than younger adults. Similarly, the cytotoxic CD8 + T-cell response remained diminished with reduced PD-1 expression even after booster vaccination compared with that in younger adults, suggesting impaired memory T-cell activation in older adults. In contrast, although B-cell responses in older adults were weaker than those in younger adults in the primary response, the responses were significantly enhanced upon booster vaccination, reaching levels comparable with that observed in younger adults. Therefore, while booster vaccination ameliorates impaired humoral immunity in older adults by efficiently stimulating memory B-cell responses, it may less effectively enhance T-cell-mediated cellular immunity. Our study provides insights for the development of effective therapeutic and vaccine strategies for the most vulnerable older population.
Journal Article
Multirotor Ensemble Model Predictive Control I: Simulation Experiments
2023
Nonlinear receding horizon model predictive control is a powerful approach to controlling nonlinear dynamical systems. However, typical approaches that use the Jacobian, adjoint, and forward-backward passes may lose fidelity and efficacy for highly nonlinear problems. Here, we develop an Ensemble Model Predictive Control (EMPC) approach wherein the forward model remains fully nonlinear, and an ensemble-represented Gaussian process performs the backward calculations to determine optimal gains for the initial time. EMPC admits black box, possible non-differentiable models, simulations are executable in parallel over long horizons, and control is uncertainty quantifying and applicable to stochastic settings. We construct the EMPC for terminal control and regulation problems and apply it to the control of a quadrotor in a simulated, identical-twin study. Results suggest that the easily implemented approach is promising and amenable to controlling autonomous robotic systems with added state/parameter estimation and parallel computing.
DNA damage in proximal tubules triggers systemic metabolic dysfunction through epigenetically altered macrophages
2025
DNA damage repair is a critical physiological process closely linked to aging. The accumulation of DNA damage in renal proximal tubular epithelial cells (PTEC) is related to a decline in kidney function. Here, we report that DNA double-strand breaks in PTECs lead to systemic metabolic dysfunction, including weight loss, reduced fat mass, impaired glucose tolerance with mitochondrial dysfunction, and increased inflammation in adipose tissues and the liver. Single-cell RNA sequencing analysis reveals expansion of CD11c+ Ccr2+ macrophages in the kidney cortex, liver, and adipose tissues and Ly6C
hi
monocytes in peripheral blood. DNA damage in PTECs is associated with hypomethylation of macrophage activation genes, including Gasdermin D, in peripheral blood cells, which is linked to reduced DNA methylation at KLF9-binding motifs. Macrophage depletion ameliorates metabolic abnormalities. These findings highlight the impact of kidney DNA damage on systemic metabolic homeostasis, revealing a kidney-blood-metabolism axis mediated by epigenetic changes in macrophages.
DNA damage in renal proximal tubular epithelial cells may lead to impaired kidney function but the biological processes contributing to this functional decline are incompletely understood. Here, the authors show that DNA double-strand breaks in these renal epithelial cells alter the epigenetic landscape of myeloid cells in the kidney and peripheral blood, which in turn induces systemic metabolic changes and reinforces the metabolic vicious circle.
Journal Article
Clinical and genetic features of cystic fibrosis in Japan
by
Taniguchi, Itsuka
,
Kondo, Shiho
,
Higuchi, Mayuko
in
Alleles
,
Cystic fibrosis
,
Diabetes mellitus
2023
Cystic fibrosis (CF) is an autosomal recessive disease caused by pathogenic variants in CF transmembrane conductance regulator (CFTR). While CF is the most common hereditary disease in Caucasians, it is rare in East Asia. In the present study, we have examined clinical features and the spectrum of CFTR variants of CF patients in Japan. Clinical data of 132 CF patients were obtained from the national epidemiological survey since 1994 and CF registry. From 2007 to 2022, 46 patients with definite CF were analyzed for CFTR variants. All exons, their boundaries, and part of promoter region of CFTR were sequenced and the presence of large deletion and duplications were examined by multiplex ligation-dependent probe amplification. CF patients in Japan were found to have chronic sinopulmonary disease (85.6%), exocrine pancreatic insufficiency (66.7%), meconium ileus (35.6%), electrolyte imbalance (21.2%), CF-associated liver disease (14.4%), and CF-related diabetes (6.1%). The median survival age was 25.0 years. The mean BMI percentile was 30.3%ile in definite CF patients aged < 18 years whose CFTR genotypes were known. In 70 CF alleles of East Asia/Japan origin, CFTR-dele16-17a-17b was detected in 24 alleles, the other variants were novel or very rare, and no pathogenic variants were detected in 8 alleles. In 22 CF alleles of Europe origin, F508del was detected in 11 alleles. In summary, clinical phenotype of Japanese CF patients is similar to European patients, but the prognosis is worse. The spectrum of CFTR variants in Japanese CF alleles is entirely different from that in European CF alleles.
Journal Article
Mycobacterial DNA-binding protein 1 is critical for BCG survival in stressful environments and simultaneously regulates gene expression
by
Gebretsadik, Gebremichal
,
Okuda, Shujiro
,
Nishiyama, Akihito
in
631/250/255/1856
,
631/326/1320
,
Antibiotics
2023
Survival of the live attenuated Bacillus Calmette-Guérin (BCG) vaccine amidst harsh host environments is key for BCG effectiveness as it allows continuous immune response induction and protection against tuberculosis. Mycobacterial DNA binding protein 1 (MDP1), a nucleoid associated protein, is essential in BCG. However, there is limited knowledge on the extent of MDP1 gene regulation and how this influences BCG survival. Here, we demonstrate that MDP1 conditional knockdown (cKD) BCG grows slower than vector control in vitro
,
and dies faster upon exposure to antibiotics (bedaquiline) and oxidative stress (H
2
O
2
and menadione). MDP1-cKD BCG also exhibited low infectivity and survival in THP-1 macrophages and mice indicating possible susceptibility to host mediated stress. Consequently, low in vivo survival resulted in reduced cytokine (IFN-gamma and TNF-alpha) production by splenocytes. Temporal transcriptome profiling showed more upregulated (81–240) than downregulated (5–175) genes in response to MDP1 suppression. Pathway analysis showed suppression of biosynthetic pathways that coincide with low in vitro growth. Notable was the deferential expression of genes involved in stress response (
sigI
), maintenance of DNA integrity (
mutT1
), REDOX balance (
WhiB3
), and host interactions (
PE/PE_PGRS
). Thus, this study shows MDP1’s importance in BCG survival and highlights MDP1-dependent gene regulation suggesting its role in growth and stress adaptation.
Journal Article
Bicarbonate transport of airway surface epithelia in luminally perfused mice bronchioles
by
Yamaguchi, Makoto
,
Taniguchi, Itsuka
,
Higuchi, Mayuko
in
Amiloride
,
Animals
,
Antiporters - metabolism
2022
HCO3− secretion in distal airways is critical for airway mucosal defense. HCO3−/H+ transport across the apical membrane of airway surface epithelial cells was studied by measuring intracellular pH in luminally microperfused freshly dissected mice bronchioles. Functional studies demonstrated that CFTR, ENaC, Cl−–HCO3− exchange, Na+-H+ exchange, and Na+–HCO3− cotransport are involved in apical HCO3−/H+ transport. RT-PCR of isolated bronchioles detected fragments from Cftr, α, β, γ subunits of ENaC, Ae2, Ae3, NBCe1, NBCe2, NBCn1, NDCBE, NBCn2, Nhe1, Nhe2, Nhe4, Nhe5, Slc26a4, Slc26a6, and Slc26a9. We assume that continuous decline of intracellular pH following alkaline load demonstrates time course of HCO3− secretion into the lumen which is perfused with a HCO3−-free solution. Forskolin-stimulated HCO3− secretion was substantially inhibited by luminal application of CFTRinh-172 (5 μM), H2DIDS (200 μM), and amiloride (1 μM). In bronchioles from a cystic fibrosis mouse model, basal and acetylcholine-stimulated HCO3− secretion was substantially impaired, but forskolin transiently accelerated HCO3− secretion of which the magnitude was comparable to wild-type bronchioles. In conclusion, we have characterized apical HCO3−/H+ transport in native bronchioles. We have demonstrated that cAMP-mediated and Ca2+-mediated pathways are involved in HCO3− secretion and that apical HCO3− secretion is largely mediated by CFTR and H2DIDS-sensitive Cl−–HCO3− exchanger, most likely Slc26a9. The impairment of HCO3− secretion in bronchioles from a cystic fibrosis mouse model may be related to the pathogenesis of early lung disease in cystic fibrosis.
Journal Article
Induction of SGK1 via glucocorticoid-influenced clinical outcome of triple-negative breast cancer patients
2023
PurposeTriple-negative breast cancer (TNBC) is a highly heterogeneous and aggressive breast malignancy. Glucocorticoid (GC)–glucocorticoid receptor (GR) pathway plays a pivotal role in the cellular responses to various stresses including chemotherapy. Serum- and glucocorticoid-induced kinase-1 (SGK1) is known as an important downstream effector molecule in the GR signaling pathway, we attempted to explore its clinicopathological and functional significance in TNBC in which GR is expressed.MethodsWe first immunolocalized GR and SGK1 and correlated the results with clinicopathological variables and clinical outcome in 131 TNBC patients. We also evaluated the effects of SGK1 on the cell proliferation and migration in TNBC cell lines with administration of dexamethasone (DEX) to further clarify the significance of SGK1.ResultsThe status of SGK1 in carcinoma cells was significantly associated with adverse clinical outcome in TNBC patients examined and was significantly associated with lymph node metastasis, pathological stage, and lymphatic invasion of the patients. In particular, SGK1 immunoreactivity was significantly associated with an increased risk of recurrence in GR-positive TNBC patients. Subsequent in vitro studies also demonstrated that DEX promoted TNBC cell migration and the silencing of gene expression did inhibit the cell proliferation and migration of TNBC cells under DEX treatment.ConclusionsTo the best of our knowledge, this is the first study to explore an association between SGK1 and clinicopathological variables and clinical outcome of TNBC patients. SGK1 status was significantly positively correlated with adverse clinical outcome of TNBC patients and promoted carcinoma cell proliferation and migration of carcinoma cells.
Journal Article
The Pro-Tumorigenic Role of Chemotherapy-Induced Extracellular HSP70 from Breast Cancer Cells via Intratumoral Macrophages
by
Takagi, Kiyoshi
,
Yamaguchi-Tanaka, Mio
,
Miki, Yasuhiro
in
Angiogenesis
,
Breast cancer
,
Breast carcinoma
2023
Tumor-associated macrophages (TAMs) contribute to tumor progression and chemoresistance; it is therefore important to clarify the altered functions of macrophages following chemotherapy. While extracellular heat shock protein (HSP) 70 is associated with therapeutic resistance, the effects of HSP70 on TAMs remain largely unknown. Here, we conducted in vitro experiments and immunohistochemistry in 116 breast carcinoma specimens to determine whether the secretion of HSP70 from breast cancer cells following chemotherapy affects macrophage function. It was revealed that the interaction of epirubicin (EPI)-exposed breast cancer cells with macrophages enhanced tumor progression, and EPI promoted the secretion of extracellular HSP70 from breast cancer cells. The expression of pro-tumorigenic macrophage marker CD163 was decreased in macrophages treated with a conditioned medium (CM) from HSP70-silenced breast cancer cells. Breast cancer cells treated with CM from HSP70-silenced breast cancer cells showed decreased expression of transforming growth factor (TGF)-β, and the pro-tumorigenic effects of macrophages were impaired when TGF-β signaling was inhibited. Immunohistochemistry demonstrated that HSP70 served as a poor prognostic factor in conjunction with macrophage infiltration. It was therefore concluded that extracellular HSP70 levels increased following chemotherapy and enhanced the pro-tumorigenic effects of TAMs, either directly or indirectly, by regulating TGF-β expression in breast cancer cells.
Journal Article
Significance of glucocorticoid signaling in triple-negative breast cancer patients: a newly revealed interaction with androgen signaling
by
Guestini, Fouzia
,
Khalid, Freeha
,
Miki, Yasuhiro
in
11β-Hydroxysteroid dehydrogenase
,
Androgen receptors
,
Androgens
2020
Purpose
Chemotherapy is the only current effective systemic treatment for triple-negative breast cancer (TNBC) patients. Therefore, the identification of active biological pathways that could become therapeutic targets is crucial. In this study, considering the well-reported biological roles of glucocorticoid and androgen receptors (GR, AR) in TNBC, we attempted to explore the effects of glucocorticoids (GCs) on cell kinetics as well as the potential interaction between GR and AR in TNBC.
Methods
We first explored the association between the status of GR, AR, and/or GCs-metabolizing enzymes such as 11β-hydroxysteroid dehydrogenase (11βHSD) 1 and 2 and the clinicopathological variables of the TNBC patients. Thereafter, we also studied the effects of dexamethasone (DEX) with/without dihydrotestosterone (DHT) on TNBC cell lines by assessing the cell proliferation, migration and GC response genes at the transcriptional level.
Results
GR positivity in carcinoma cells was significantly associated with adverse clinical outcome of the patients and AR positivity was significantly associated with lower histological grade and Ki-67 labeling index of the cases examined. In particular, AR positivity was significantly associated with decreased risks of developing recurrence in GR-positive TNBC patients. The subsequent in vitro studies revealed that DEX-promoted cell migration was inhibited by the co-treatment with DHT in GR/AR double-positive HCC38 cells. In addition, DHT inhibited the DEX-increased serum and glucocorticoid-regulated kinase-1 (SGK1) mRNA expression.
Conclusion
This is the first study to reveal that the interaction of GR and AR did influence the clinical outcome of TNBC patients and GCs induced cell migration in TNBC cells.
Journal Article
Labor dystocia and risk of histological chorioamnionitis and funisitis: a study from a single tertiary referral center
by
Murata, Tuyoshi
,
Yazawa, Riho
,
Kyozuka, Hyo
in
Childbirth & labor
,
Childrens health
,
Funisitis
2021
Background
Intrauterine inflammation affects short- and long-term neonatal outcomes. Histological chorioamnionitis and funisitis are acute inflammatory responses in the fetal membranes and umbilical cord, respectively. Although labor dystocia includes a potential risk of intrauterine inflammation, the risk of histological chorioamnionitis and funisitis of labor dystocia has not been evaluated yet. This study aimed to examine the association between labor dystocia and risk of histological chorioamnionitis and funisitis.
Methods
In this retrospective cohort study, the cases who underwent histopathological examinations of the placenta and umbilical cord at Fukushima Medical University Hospital, Japan, between 2015 and 2020, were included. From the dataset, the pathological findings of the patients with labor dystocia and spontaneous preterm birth were reviewed. Based on the location of leukocytes, the inflammation in the placenta (histological chorioamnionitis) and umbilical cord (funisitis) was staged as 0–3. Multiple logistic regression analysis was performed to evaluate the risk of histological chorioamnionitis, histological chorioamnionitis stage ≥2, funisitis, and funisitis stage ≥2.
Result
Of 317 women who met the study criteria, 83 and 144 women had labor dystocia and spontaneous preterm birth, respectively, and 90 women were included as controls. Labor dystocia was a risk factor for histological chorioamnionitis (adjusted odds ratio, 6.3; 95% confidential interval, 1.9–20.5), histological chorioamnionitis stage ≥2 (adjusted odds ratio, 6.0; 95% confidence interval, 1.7–21.8), funisitis (adjusted odds ratio, 15.4; 95% confidence interval, 2.3–101.3), and funisitis stage ≥2 (adjusted odds ratio, 18.5; 95% confidence interval, 2.5–134.0). Spontaneous preterm birth was also a risk factor for histological chorioamnionitis (adjusted odds ratio, 3.7; 95% confidence interval, 1.7–7.8), histological chorioamnionitis stage ≥2 (adjusted odds ratio, 3.0; 95% confidence interval, 1.2–7.9), and funisitis (adjusted odds ratio, 6.6; 95% confidence interval, 1.4–30.6). However, the adjusted odds ratio was smaller in spontaneous preterm births than in labor dystocia.
Conclusion
Labor dystocia is a risk factor for severe histological chorioamnionitis and funisitis. Further studies are required to evaluate the effects of histological chorioamnionitis and funisitis on long-term neonatal outcomes.
Journal Article