Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
700 result(s) for "Yan, Yajun"
Sort by:
Bacterial synthesis of C3-C5 diols via extending amino acid catabolism
Amino acids are naturally occurring and structurally diverse metabolites in biological system, whose potentials for chemical expansion, however, have not been fully explored. Here, we devise a metabolic platform capable of producing industrially important C3-C5 diols from amino acids. The presented platform combines the natural catabolism of charged amino acids with a catalytically efficient and thermodynamically favorable diol formation pathway, created by expanding the substrate scope of the carboxylic acid reductase toward noncognate ω-hydroxylic acids. Using the established platform as gateways, seven different diol-convertible amino acids are converted to diols including 1,3-propanediol, 1,4-butanediol, and 1,5- pentanediol. Particularly, we afford to optimize the production of 1,4-butanediol and demonstrate the de novo production of 1,5-pentanediol from glucose, with titers reaching 1.41 and 0.97 g l−1, respectively. Our work presents a metabolic platform that enriches the pathway repertoire for nonnatural diols with feedstock flexibility to both sugar and protein hydrolysates.
Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex
Background Caffeic acid (3,4-dihydroxycinnamic acid) is a natural phenolic compound derived from the plant phenylpropanoid pathway. Caffeic acid and its phenethyl ester (CAPE) have attracted increasing attention for their various pharmaceutical properties and health-promoting effects. Nowadays, large-scale production of drugs or drug precursors via microbial approaches provides a promising alternative to chemical synthesis and extraction from plant sources. Results We first identified that an Escherichia coli native hydroxylase complex previously characterized as the 4-hydroxyphenylacetate 3-hydroxylase (4HPA3H) was able to convert p -coumaric acid to caffeic acid efficiently. This critical enzymatic step catalyzed in plants by a membrane-associated cytochrome P450 enzyme, p -coumarate 3-hydroxylase (C3H), is difficult to be functionally expressed in prokaryotic systems. Moreover, the performances of two tyrosine ammonia lyases (TALs) from Rhodobacter species were compared after overexpression in E. coli . The results indicated that the TAL from R. capsulatus ( Rc ) possesses higher activity towards both tyrosine and L -dopa. Based on these findings, we further designed a dual pathway leading from tyrosine to caffeic acid consisting of the enzymes 4HPA3H and Rc TAL. This heterologous pathway extended E. coli native tyrosine biosynthesis machinery and was able to produce caffeic acid (12.1 mg/L) in minimal salt medium. Further improvement in production was accomplished by boosting tyrosine biosynthesis in E. coli , which involved the alleviation of tyrosine-induced feedback inhibition and carbon flux redirection. Finally, the titer of caffeic acid reached 50.2 mg/L in shake flasks after 48-hour cultivation. Conclusion We have successfully established a novel pathway and constructed an E. coli strain for the production of caffeic acid. This work forms a basis for further improvement in production, as well as opens the possibility of microbial synthesis of more complex plant secondary metabolites derived from caffeic acid. In addition, we have identified that TAL is the rate-limiting enzyme in this pathway. Thus, exploration for more active TALs via bio-prospecting and protein engineering approaches is necessary for further improvement of caffeic acid production.
Microbial biosynthesis of the anticoagulant precursor 4-hydroxycoumarin
4-Hydroxycoumarin (4HC) type anticoagulants (for example, warfarin) are known to have a significant role in the treatment of thromboembolic diseases—a leading cause of patient morbidity and mortality worldwide. 4HC serves as an immediate precursor of these synthetic anticoagulants. Although 4HC was initially identified as a naturally occurring product, its biosynthesis has not been fully elucidated. Here we present the design, validation, in vitro diagnosis and optimization of an artificial biosynthetic mechanism leading to the microbial biosynthesis of 4HC. Remarkably, function-based enzyme bioprospecting leads to the identification of a characteristic FabH-like quinolone synthase from Pseudomonas aeruginosa with high efficiency on the 4HC-forming reaction, which promotes the high-level de novo biosynthesis of 4HC in Escherichia coli (~500 mg l −1 in shake flasks) and further in situ semisynthesis of warfarin. This work has the potential to be scaled-up for microbial production of 4HC and opens up the possibility of biosynthesizing diverse coumarin molecules with pharmaceutical importance. 4-hydroxycoumarin (4HC), a precursor for anticoagulant drugs such as warfarin, has a major role in the treatment of thromboembolic diseases. Here, the authors present an artificial biosynthetic pathway for 4HC production in E. coli and demonstrate its potential for large-scale microbial production.
Design of stable and self-regulated microbial consortia for chemical synthesis
Microbial coculture engineering has emerged as a promising strategy for biomanufacturing. Stability and self-regulation pose a significant challenge for the generation of intrinsically robust cocultures for large-scale applications. Here, we introduce the use of multi-metabolite cross-feeding (MMCF) to establish a close correlation between the strains and the design rules for selecting the appropriate metabolic branches. This leads to an intrinicially stable two-strain coculture where the population composition and the product titer are insensitive to the initial inoculation ratios. With an intermediate-responsive biosensor, the population of the microbial coculture is autonomously balanced to minimize intermediate accumulation. This static-dynamic strategy is extendable to three-strain cocultures, as demonstrated with de novo biosynthesis of silybin/isosilybin. This strategy is generally applicable, paving the way to the industrial application of microbial cocultures. Stability and tunability are two desirable properties of microbial consortia-based bioproduction. Here, the authors integrate a caffeate-responsive biosensor into two and three strains coculture system to achieve autonomous regulation of strain ratios for coniferol and silybin/isosiltbin production, respectively.
Biosynthesis of aromatic polyketides in microorganisms using type II polyketide synthases
Aromatic polyketides have attractive biological activities and pharmacological properties. Different from other polyketides, aromatic polyketides are characterized by their polycyclic aromatic structure. The biosynthesis of aromatic polyketides is usually accomplished by the type II polyketide synthases (PKSs), which produce highly diverse polyketide chains by sequential condensation of the starter units with extender units, followed by reduction, cyclization, aromatization and tailoring reactions. Recently, significant progress has been made in characterization and engineering of type II PKSs to produce novel products and improve product titers. In this review, we briefly summarize the architectural organizations and genetic contributions of PKS genes to provide insight into the biosynthetic process. We then review the most recent progress in engineered biosynthesis of aromatic polyketides, with emphasis on generating novel molecular structures. We also discuss the current challenges and future perspectives in the rational engineering of type II PKSs for large scale production of aromatic polyketides.
Engineering probiotics as living diagnostics and therapeutics for improving human health
The gut microbiota that inhabit our gastrointestinal tract are well known to play an important role in maintaining human health in many aspects, including facilitating the digestion and absorption of nutrients, protecting against pathogens and regulating immune system. Gut microbiota dysbiosis is associated with a lot of diseases, such as inflammatory bowel disease, allergy, obesity, cardiovascular and neurodegenerative diseases and cancers. With the increasing knowledge of the microbiome, utilization of probiotic bacteria in modulating gut microbiota to prevent and treat a large number of disorders and diseases has gained much interest. In recent years, aided by the continuous development of tools and techniques, engineering probiotic microbes with desired characteristics and functionalities to benefit human health has made significant progress. In this paper, we summarize the recent advances in design and construction of probiotics as living diagnostics and therapeutics for probing and treating a series of diseases including metabolic disorders, inflammation and pathogenic bacteria infections. We also discuss the current challenges and future perspectives in expanding the application of probiotics for disease treatment and detection. We intend to provide insights and ideas for engineering of probiotics to better serve disease therapy and human health.
Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides
We report systematic optical studies of WS 2 and WSe 2 monolayers and multilayers. The efficiency of second harmonic generation shows a dramatic even-odd oscillation with the number of layers, consistent with the presence (absence) of inversion symmetry in even-layer (odd-layer). Photoluminescence (PL) measurements show the crossover from an indirect band gap semiconductor at multilayers to a direct-gap one at monolayers. A hot luminescence peak (B) is observed at ~0.4 eV above the prominent band edge peak (A) in all samples. The magnitude of A-B splitting is independent of the number of layers and coincides with the spin-valley coupling strength in monolayers. Ab initio calculations show that this thickness independent splitting pattern is a direct consequence of the giant spin-valley coupling which fully suppresses interlayer hopping at valence band edge near K points because of the sign change of the spin-valley coupling from layer to layer in the 2H stacking order.
Redesigning regulatory components of quorum-sensing system for diverse metabolic control
Quorum sensing (QS) is a ubiquitous cell–cell communication mechanism that can be employed to autonomously and dynamically control metabolic fluxes. However, since the functions of genetic components in the circuits are not fully understood, the developed QS circuits are still less sophisticated for regulating multiple sets of genes or operons in metabolic engineering applications. Here, we discover the regulatory roles of a CRP-binding site and the lux box to −10 region within luxR - luxI intergenic sequence in controlling the lux-type QS promoters. By varying the numbers of the CRP-binding site and redesigning the lux box to −10 site sequence, we create a library of QS variants that possess both high dynamic ranges and low leakiness. These circuits are successfully applied to achieve diverse metabolic control in salicylic acid and 4-hydroxycoumarin biosynthetic pathways in Escherichia coli . This work expands the toolbox for dynamic control of multiple metabolic fluxes under complex metabolic background and presents paradigms to engineer metabolic pathways for high-level synthesis of target products. Existing quorum sensing (QS) circuits are less sophisticated for regulating multiple sets of genes or operons. Here, the authors redesign the luxR-luxI intergenic sequence of the lux-type QS system and apply it to achieve diverse metabolic control in salicylic acid and 4-hydroxycoumarin biosynthesis in E. coli .
Sensor-regulator and RNAi based bifunctional dynamic control network for engineered microbial synthesis
Writing artificial logic and dynamic function into complex cellular background to achieve desired phenotypes or improved outputs calls for the development of new genetic tools as well as their innovative use. In this study, we present a sensor-regulator and RNAi-based bifunctional dynamic control network that can provide simultaneous upregulation and downregulation of cellular metabolism for engineered biosynthesis. The promoter-regulator-mediated upregulation function and its transduced downregulation function through RNAi are systematically verified and characterized. We apply this dynamic control network to regulate the phosphoenolpyruvate metabolic node in Escherichia coli and achieve autonomous distribution of carbon flux between its native metabolism and the engineered muconic acid biosynthetic pathway. This allows muconic acid biosynthesis to reach 1.8 g L −1 . This study also suggests the circumstances where dynamic control approaches are likely to take effects. Engineering dynamic control can improve microbial production of target chemicals. Here, the authors design a sensor-regulator and RNAi based bifunctional dynamic control network that can simultaneously and independently turn up and down cellular metabolism for engineered muconic acid production in E. coli .
Targeting metabolic driving and intermediate influx in lysine catabolism for high-level glutarate production
Various biosynthetic pathways have been designed to explore sustainable production of glutarate, an attractive C5 building block of polyesters and polyamides. However, its efficient production has not been achieved in Escherichia coli . Here, we use E. coli native lysine catabolic machinery for glutarate biosynthesis. This endogenous genes-only design can generate strong metabolic driving force to maximize carbon flux toward glutarate biosynthesis by replenishing glutamate and NAD(P)H for lysine biosynthesis, releasing lysine feedback inhibition, and boosting oxaloacetate supply. We use native transporters to overcome extracellular accumulation of cadaverine and 5-aminovalerate. With these efforts, both high titer (54.5 g L −1 ) and high yield (0.54 mol mol −1 glucose) of glutarate production are achieved under fed-batch conditions. This work demonstrates the power of redirecting carbon flux and the role of transporters to decrease intermediate accumulation. The efficiency of producing glutarate, a valuable platform C5 compound, by engineered E. coli is low. Here, the authors achieve high titer and yield of glutarate production by pushing and pulling carbon flux in the native pathway and increasing intermediate influx using newly identified transporters.