Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
26 result(s) for "Yanamandra, Niranjan"
Sort by:
Tumor-immune profiling of murine syngeneic tumor models as a framework to guide mechanistic studies and predict therapy response in distinct tumor microenvironments
Mouse syngeneic tumor models are widely used tools to demonstrate activity of novel anti-cancer immunotherapies. Despite their widespread use, a comprehensive view of their tumor-immune compositions and their relevance to human tumors has only begun to emerge. We propose each model possesses a unique tumor-immune infiltrate profile that can be probed with immunotherapies to inform on anti-tumor mechanisms and treatment strategies in human tumors with similar profiles. In support of this endeavor, we characterized the tumor microenvironment of four commonly used models and demonstrate they encompass a range of immunogenicities, from highly immune infiltrated RENCA tumors to poorly infiltrated B16F10 tumors. Tumor cell lines for each model exhibit different intrinsic factors in vitro that likely influence immune infiltration upon subcutaneous implantation. Similarly, solid tumors in vivo for each model are unique, each enriched in distinct features ranging from pathogen response elements to antigen presentation machinery. As RENCA tumors progress in size, all major T cell populations diminish while myeloid-derived suppressor cells become more enriched, possibly driving immune suppression and tumor progression. In CT26 tumors, CD8 T cells paradoxically increase in density yet are restrained as tumor volume increases. Finally, immunotherapy treatment across these different tumor-immune landscapes segregate into responders and non-responders based on features partially dependent on pre-existing immune infiltrates. Overall, these studies provide an important resource to enhance our translation of syngeneic models to human tumors. Future mechanistic studies paired with this resource will help identify responsive patient populations and improve strategies where immunotherapies are predicted to be ineffective.
High OX-40 expression in the tumor immune infiltrate is a favorable prognostic factor of overall survival in non-small cell lung cancer
IntroductionOX-40 co-stimulatory signaling plays a role in mounting anti-tumor immune responses and clinical trials targeting this pathway are ongoing. However, the association of with OX-40 protein expression with clinical outcomes and pathological features in non-small cell lung cancer (NSCLC) are largely unknown.MethodsSurgically-resected stage I-III NSCLC specimens (N = 100) were stained by immunohistochemistry (IHC) for the following immune markers: OX-40, PD-L1, PD-1, CD3, CD4, CD8, CD45RO, CD57, CD68, FOXP3, granzyme B, and ICOS. Immune-related markers mRNA expression were also assessed. We evaluated the association of OX-40 levels with major clinicopathologic variables, including molecular driver mutations.ResultsOX-40 IHC expression was observed in all tested tumors, predominantly localized in the membrane of the tumor immune infiltrate, and was not associated with a specific clinicopathologic or molecular subtype. High OX-40 expression levels measured by IHC median score were associated with better overall survival (OS) (p = 0.002), independent of CD3/CD8, PD-L1, and ICOS expression. High OX-40 IHC score was associated with increased expression of immune-related genes such as CD3, IFN-gamma, ICOS, CD8, CXCL9, CXCL10, CCL5, granzyme K.ConclusionsHigh OX-40 IHC expression in the tumor immune infiltrate is associated with favorable prognosis and increased levels of immune-related genes including IFN-gamma in patients with surgically resected stage I-III NSCLC. Its prognostic utility is independent of PD-L1 and other common markers of immune activation. High OX-40 expression potentially identifies a unique subgroup of NSCLC that may benefit from co-stimulation with OX-40 agonist antibodies and potentially enhance the efficacy of existing immune checkpoint therapies.
Promoter methylation and silencing of the tissue factor pathway inhibitor-2 (TFPI-2), in human glioma cells
We have shown previously that the tissue factor pathway inhibitor-2 (TFPI-2), a broad range proteinase inhibitor, is highly expressed in low-grade gliomas, but, minimally expressed or undetectable in glioblastomas, and that enforced expression of this gene reduces the invasive properties of brain tumor cells. Here, we examined the role of promoter methylation as a mechanism of TFPI-2 gene silencing. In SNB19 glioblastoma cells, which have no detectable TFPI-2 expression, 5-aza-2′-deoxycytidine (5aC), an inhibitor of DNA methyltransferase, induced TFPI-2 mRNA in a dose-dependent manner. Trichostatin A (TSA), the histone deacetylase (HDAC) inhibitor, by itself, was more efficient than 5aC in inducing TFPI-2 transcripts, and the 5aC+TSA combination resulted in highly synergistic reactivation of the gene, both at the transcript and protein levels. In Hs683 glioma cells, which express the TFPI-2 gene at high levels, transfection of the in vitro methylated TFPI-2 promoter constructs resulted in a drastic decrease of promoter activity compared to the unmethylated promoter. Further, the methylation-specific PCR in SNB19 and Hs683 cells showed that TFPI-2 gene repression was closely linked with methylation of the CpG islands in the promoter. Finally, the chromatin immunoprecipitation assays in SNB19 cells showed that the methylated and repressed TFPI-2 promoter was associated with the methyl-CpG binding protein 2 (MeCP2), and that gene reactivation resulted in the loss of MeCP2 from this site. These studies establish that TFPI-2 is transcriptionally silenced through promoter methylation in SNB19 cells.
Modulation of cystatin C expression impairs the invasive and tumorigenic potential of human glioblastoma cells
Increases in the abundance of cathepsin B transcript and protein with increased tumor grade and changes in subcellular localization and activity of this enzyme. We observed progressive reductions in levels of the protease inhibitor cystatin C, an inhibitor of cathepsin B with corresponding increases in the malignancy of glioma cell lines, implying an inverse correlation between cystatin C and tumor grade. To investigate the role of cystatin C in the invasion of brain tumor cells, we stably transfected SNB19 glioblastoma cells with either a 0.4-kb cDNA construct of human cystatin C in the sense orientation or an empty vector. Clones expressing sense-cystatin C cDNA had higher cystatin C mRNA and protein levels than did control cells. Sense-transfected cells were also markedly less invasive than control cells in a Matrigel invasion assay and in a coculture assay of SNB19 spheroids and fetal rat brain aggregates. Finally, the sense-transfected cells did not form tumors in nude mice upon intracerebral injection. These results strongly implicate cystatin C in the invasiveness of human glioblastoma cells and suggest that sense transcripts of cystatin C may prove useful in cancer therapy.
Modulation of invasive properties of human glioblastoma cells stably expressing amino-terminal fragment of urokinase-type plasminogen activator
The binding of urokinase-type plasminogen activator (uPA) to its receptor (uPAR) on the surface of tumor cells is involved in the activation of proteolytic cascades responsible for the invasiveness of those cells. The diffuse, extensive infiltration of glioblastomas into the surrounding normal brain tissue is believed to rely on modifications of the proteolysis of extracellular matrix components; blocking the interaction between uPA and uPAR might be a suitable approach for inhibiting glioma tumorigenesis. We assessed how expression of an amino-terminal fragment (ATF) of uPA that contains binding site to uPAR affects the invasiveness of SNB19 human glioblastoma cells. SNB19 cells were transfected with an expression plasmid (pcDNA3-ATF) containing a cDNA sequence of ATF-uPA. The resulting ATF-uPA-expressing clones showed markedly less cell adhesion, spreading, and clonogenicity than did control cells. Endogenous ATF expression also significantly decreased the invasive capacity of transfected glioblastoma cells in Matrigel and spheroid-rat brain cell aggregate models. ATF-uPA transfectants were also markedly less invasive than parental SNB19 cells after injection into the brains of nude mice, suggesting that competitive inhibition of the uPA-uPAR interaction on SNB19 cells by means of transfection with ATF cDNA could be a useful therapeutic strategy for inhibiting tumor progression.
First-in-human phase I study of the OX40 agonist GSK3174998 with or without pembrolizumab in patients with selected advanced solid tumors (ENGAGE-1)
BackgroundThe phase I first-in-human study ENGAGE-1 evaluated the humanized IgG1 OX40 agonistic monoclonal antibody GSK3174998 alone (Part 1 (P1)) or in combination with pembrolizumab (Part 2 (P2)) in patients with advanced solid tumors.MethodsGSK3174998 (0.003–10 mg/kg) ± pembrolizumab (200 mg) was administered intravenously every 3 weeks using a continuous reassessment method for dose escalation. Primary objectives were safety and tolerability; secondary objectives included pharmacokinetics, immunogenicity, pharmacodynamics, and clinical activity.Results138 patients were enrolled (45 (P1) and 96 (P2, including 3 crossovers)). Treatment-related adverse events occurred in 51% (P1) and 64% (P2) of patients, fatigue being the most common (11% and 24%, respectively). No dose-toxicity relationship was observed, and maximum-tolerated dose was not reached. Dose-limiting toxicities (P2) included Grade 3 (G3) pleural effusion and G1 myocarditis with G3 increased troponin. GSK3174998 ≥0.3 mg/kg demonstrated pharmacokinetic linearity and >80% receptor occupancy on circulating T cells; 0.3 mg/kg was selected for further evaluation. Limited clinical activity was observed for GSK3174998 (P1: disease control rate (DCR) ≥24 weeks 9%) and was not greater than that expected for pembrolizumab alone (P2: overall response rate 8%, DCR ≥24 weeks 28%). Multiplexed immunofluorescence data from paired biopsies suggested that increased infiltration of natural killer (NK)/natural killer T (NKT) cells and decreased regulatory T cells (Tregs) in the tumor microenvironment may contribute to clinical responses: CD16+CD56–CD134+ NK /NKT cells and CD3+CD4+FOXP3+CD134+ Tregs exhibited the largest magnitude of change on treatment, whereas CD3+CD8+granzyme B+PD-1+CD134+ cytotoxic T cells were the least variable. Tumor gene expression profiling revealed an upregulation of inflammatory responses, T-cell proliferation, and NK cell function on treatment with some inflammatory cytokines upregulated in peripheral blood. However, target engagement, evidenced by pharmacologic activity in peripheral blood and tumor tissue, did not correlate with clinical efficacy. The low number of responses precluded identifying a robust biomarker signature predictive of response.ConclusionsGSK3174998±pembrolizumab was well tolerated over the dose range tested and demonstrated target engagement. Limited clinical activity does not support further development of GSK3174998±pembrolizumab in advanced cancers.Trial registration numberNCT02528357.
Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis
Extracellular proteases have been shown to cooperatively influence matrix degradation and tumor cell invasion through proteolytic cascades, with individual proteases having distinct roles in tumor growth, invasion, migration and angiogenesis. Matrix metalloproteases (MMP)-9 and cathepsin B have been shown to participate in the processes of tumor growth, vascularization and invasion of gliomas. In the present study, we used a cytomegalovirus promoter-driven DNA template approach to induce hairpin RNA (hpRNA)-triggered RNA interference (RNAi) to block MMP-9 and cathepsin B gene expression with a single construct. Transfection of a plasmid vector-expressing double-stranded RNA (dsRNA) for MMP-9 and cathepsin B significantly inhibited MMP-9 and cathepsin B expression and reduced the invasive behavior of SNB19, glioblastoma cell line in Matrigel and spheroid invasion models. Downregulation of MMP-9 and cathepsin B using RNAi in SNB19 cells reduced cell–cell interaction of human microvascular endothelial cells, resulting in the disruption of capillary network formation in both in vitro and in vivo models. Direct intratumoral injections of plasmid DNA expressing hpRNA for MMP-9 and cathepsin B significantly inhibited established glioma tumor growth and invasion in intracranial tumors in vivo . Further intraperitoneal (ip) injections of plasmid DNA expressing hpRNA for MMP-9 and cathepsin B completely regressed pre-established tumors for a long time (4 months) without any indication of these tumor cells. For the first time, these observations demonstrate that the simultaneous RNAi-mediated targeting of MMP-9 and cathepsin B has potential application for the treatment of human gliomas.
832 Integrative multi-omics analysis reveals enrichment of exhausted CD8+ and CD4+CD8+ T cells in the renal cell carcinoma tumor microenvironment
BackgroundRenal cell carcinoma (RCC) responds to immunotherapy despite its low tumor mutational burden (TMB). Interestingly, the degree of CD8+ T cell infiltration in RCC negatively correlates with outcomes, suggesting that a deeper understanding of the tumor microenvironment may provide critical insight to improve outcomes.MethodsMulti-omics approaches including flow cytometry, scRNA-seq, scTCR-seq, and CITE-seq were used to compare immune cell composition, gene expression, and cell-cell interactions among a cohort of primary breast cancer, head and neck squamous cell carcinoma, non-small cell lung cancer, and RCC specimens. Putative tumor specificity was determined by flow cytometry following coculture with autologous tumor cells.ResultsFlow cytometry analysis of tumor-infiltrating lymphocytes (TILs) revealed increased exhausted CD8+ (Tex) and CD4+CD8+ T cells and decreased CD4+ T cells including regulatory T cells in RCC compared to other tumors. scRNA-seq analysis confirmed these results and highlighted Tex cells as a major population of CD8+ T cells. Biomarker analysis of tumor-reactive CD8+ T cells (4-1BB+, CD39+CD103+) as well as a gene signature indicative of neoantigen reactivity, revealed that Tex and CD4+CD8+ T cell populations contain putative tumor-reactive T cells. Tumor reactivity of CD4+CD8+ T cells was demonstrated by increased 4-1BB and OX40 expression following restimulation with autologous tumor cells.ConclusionsExhausted CD8+ and CD4+CD8+ T cells in RCC contain tumor-reactive T cells and may represent a novel cell population capable of targeting RCC, suggesting additional functional characterization of these populations is warranted. Understanding mechanisms of T cell exhaustion and its reversal also has important implications for therapeutic treatment of RCC and other TMB-low, potentially immunotherapy-refractory, tumors.Ethics ApprovalSigned informed consent was obtained before enrollment. The study was approved by the Providence St. Joseph Health Institutional Review Board – Oregon (IRB #06-108).
RETRACTED ARTICLE: Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis
Extracellular proteases have been shown to cooperatively influence matrix degradation and tumor cell invasion through proteolytic cascades, with individual proteases having distinct roles in tumor growth, invasion, migration and angiogenesis. Matrix metalloproteases (MMP)-9 and cathepsin B have been shown to participate in the processes of tumor growth, vascularization and invasion of gliomas. In the present study, we used a cytomegalovirus promoter-driven DNA template approach to induce hairpin RNA (hpRNA)-triggered RNA interference (RNAi) to block MMP-9 and cathepsin B gene expression with a single construct. Transfection of a plasmid vector-expressing double-stranded RNA (dsRNA) for MMP-9 and cathepsin B significantly inhibited MMP-9 and cathepsin B expression and reduced the invasive behavior of SNB19, glioblastoma cell line in Matrigel and spheroid invasion models. Downregulation of MMP-9 and cathepsin B using RNAi in SNB19 cells reduced cell–cell interaction of human microvascular endothelial cells, resulting in the disruption of capillary network formation in both in vitro and in vivo models. Direct intratumoral injections of plasmid DNA expressing hpRNA for MMP-9 and cathepsin B significantly inhibited established glioma tumor growth and invasion in intracranial tumors in vivo. Further intraperitoneal (ip) injections of plasmid DNA expressing hpRNA for MMP-9 and cathepsin B completely regressed pre-established tumors for a long time (4 months) without any indication of these tumor cells. For the first time, these observations demonstrate that the simultaneous RNAi-mediated targeting of MMP-9 and cathepsin B has potential application for the treatment of human gliomas.
Impact of isotype on the mechanism of action of agonist anti-OX40 antibodies in cancer: implications for therapeutic combinations
BackgroundOX40 has been widely studied as a target for immunotherapy with agonist antibodies taken forward into clinical trials for cancer where they are yet to show substantial efficacy. Here, we investigated potential mechanisms of action of anti-mouse (m) OX40 and anti-human (h) OX40 antibodies, including a clinically relevant monoclonal antibody (mAb) (GSK3174998) and evaluated how isotype can alter those mechanisms with the aim to develop improved antibodies for use in rational combination treatments for cancer.MethodsAnti-mOX40 and anti-hOX40 mAbs were evaluated in a number of in vivo models, including an OT-I adoptive transfer immunization model in hOX40 knock-in (KI) mice and syngeneic tumor models. The impact of FcγR engagement was evaluated in hOX40 KI mice deficient for Fc gamma receptors (FcγR). Additionally, combination studies using anti-mouse programmed cell death protein-1 (mPD-1) were assessed. In vitro experiments using peripheral blood mononuclear cells (PBMCs) examining possible anti-hOX40 mAb mechanisms of action were also performed.ResultsIsotype variants of the clinically relevant mAb GSK3174998 showed immunomodulatory effects that differed in mechanism; mIgG1 mediated direct T-cell agonism while mIgG2a acted indirectly, likely through depletion of regulatory T cells (Tregs) via activating FcγRs. In both the OT-I and EG.7-OVA models, hIgG1 was the most effective human isotype, capable of acting both directly and through Treg depletion. The anti-hOX40 hIgG1 synergized with anti-mPD-1 to improve therapeutic outcomes in the EG.7-OVA model. Finally, in vitro assays with human peripheral blood mononuclear cells (hPBMCs), anti-hOX40 hIgG1 also showed the potential for T-cell stimulation and Treg depletion.ConclusionsThese findings underline the importance of understanding the role of isotype in the mechanism of action of therapeutic mAbs. As an hIgG1, the anti-hOX40 mAb can elicit multiple mechanisms of action that could aid or hinder therapeutic outcomes, dependent on the microenvironment. This should be considered when designing potential combinatorial partners and their FcγR requirements to achieve maximal benefit and improvement of patient outcomes.