Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
288 result(s) for "Yang, Chih-Hsin"
Sort by:
AZD9291 in EGFR Inhibitor–Resistant Non–Small-Cell Lung Cancer
AZD9291, an irreversible inhibitor of epidermal growth factor receptor, was associated with tumor responses in the majority of patients with advanced non–small-cell lung cancer in whom T790M-mediated drug resistance to other EGFR tyrosine kinase inhibitors had developed. Somatic mutations in the gene encoding epidermal growth factor receptor ( EGFR ) are detected in approximately 30 to 40% of non–small-cell lung cancers (NSCLCs) from Asian patients and in 10% of NSCLCs from white patients. 1 – 3 EGFR mutations lead to constitutive activation of EGFR signaling and oncogenic transformation both in vitro and in vivo. 4 , 5 Cancers with EGFR mutations ( EGFR- mutated cancers) depend on EGFR signaling for growth and survival and are often sensitive to treatment with EGFR tyrosine kinase inhibitors. 6 Among patients with advanced EGFR- mutated NSCLC, treatment with EGFR tyrosine kinase inhibitors (e.g., gefitinib, erlotinib, and . . .
Cone-beam CT image quality improvement using Cycle-Deblur consistent adversarial networks (Cycle-Deblur GAN) for chest CT imaging in breast cancer patients
Cone-beam computed tomography (CBCT) integrated with a linear accelerator is widely used to increase the accuracy of radiotherapy and plays an important role in image-guided radiotherapy (IGRT). For comparison with fan-beam computed tomography (FBCT), the image quality of CBCT is indistinct due to X-ray scattering, noise, and artefacts. We proposed a deep learning model, “Cycle-Deblur GAN”, combined with CycleGAN and Deblur-GAN models to improve the image quality of chest CBCT images. The 8706 CBCT and FBCT image pairs were used for training, and 1150 image pairs were used for testing in deep learning. The generated CBCT images from the Cycle-Deblur GAN model demonstrated closer CT values to FBCT in the lung, breast, mediastinum, and sternum compared to the CycleGAN and RED-CNN models. The quantitative evaluations of MAE, PSNR, and SSIM for CBCT generated from the Cycle-Deblur GAN model demonstrated better results than the CycleGAN and RED-CNN models. The Cycle-Deblur GAN model improved image quality and CT-value accuracy and preserved structural details for chest CBCT images.
Gefitinib or Carboplatin–Paclitaxel in Pulmonary Adenocarcinoma
This trial compared gefitinib, an inhibitor of the tyrosine kinase of epidermal growth factor (EGFR), with carboplatin plus paclitaxel as initial treatment of pulmonary adenocarcinoma in more than 1200 East Asian patients. The primary end point, progression-free survival, was significantly longer with gefitinib therapy among patients whose tumors carried an EGFR mutation and with carboplatin plus paclitaxel therapy among patients with mutation-negative tumors. In East Asian patients with pulmonary adenocarcinoma, progression-free survival was significantly longer with gefitinib therapy among patients whose tumors carried an EGFR mutation and with carboplatin plus paclitaxel therapy among patients with mutation-negative tumors. Inhibitors of the epidermal growth factor receptor (EGFR) tyrosine kinase have clinical efficacy, as compared with the best supportive care 1 or standard chemotherapy, 2 when given as second-line or third-line therapy for advanced non–small-cell lung cancer. Treatment with EGFR tyrosine kinase inhibitors is most effective in women, patients who have never smoked, patients with pulmonary adenocarcinomas, and patients of Asian origin. In these populations, such treatment is associated with favorable rates of objective responses, progression-free survival, and overall survival. 1 , 3 , 4 These populations also have a relatively high incidence of somatic mutations in the region of the EGFR gene that encodes . . .
Analysis of acquired resistance mechanisms to osimertinib in patients with EGFR-mutated advanced non-small cell lung cancer from the AURA3 trial
Osimertinib, an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), potently and selectively inhibits EGFR-TKI-sensitizing and EGFR T790M resistance mutations. This analysis evaluates acquired resistance mechanisms to second-line osimertinib (n = 78) in patients with EGFR T790M advanced non-small cell lung cancer (NSCLC) from AURA3 (NCT02151981), a randomized phase 3 study comparing osimertinib with chemotherapy. Plasma samples collected at baseline and disease progression/treatment discontinuation are analyzed using next-generation sequencing. Half (50%) of patients have undetectable plasma EGFR T790M at disease progression and/or treatment discontinuation. Fifteen patients (19%) have >1 resistance-related genomic alteration; MET amplification (14/78, 18%) and EGFR C797X mutation (14/78, 18%). In the phase III AURA3 study (NCT02151981), the third-generation epidermal growth factor receptor tyrosine kinase inhibitor osimertinib prolonged progression-free survival versus platinum-doublet chemotherapy in patients with EGFR T790M advanced NSCLC. Here, by next-generation sequencing of circulating tumor DNA, the authors assess candidate mechanisms of acquired resistance to osimertinib in patients from the AURA3 trial.
MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib
In human lung adenocarcinomas harboring EGFR mutations, a second-site point mutation that substitutes methionine for threonine at position 790 (T790M) is associated with approximately half of cases of acquired resistance to the EGFR kinase inhibitors, gefitinib and erlotinib. To identify other potential mechanisms that contribute to disease progression, we used array-based comparative genomic hybridization (aCGH) to compare genomic profiles of EGFR mutant tumors from untreated patients with those from patients with acquired resistance. Among three loci demonstrating recurrent copy number alterations (CNAs) specific to the acquired resistance set, one contained the MET proto-oncogene. Collectively, analysis of tumor samples from multiple independent patient cohorts revealed that MET was amplified in tumors from 9 of 43 (21%) patients with acquired resistance but in only two tumors from 62 untreated patients (3%) (P = 0.007, Fisher's Exact test). Among 10 resistant tumors from the nine patients with MET amplification, 4 also harbored the EGFRT⁷⁹⁰M mutation. We also found that an existing EGFR mutant lung adenocarcinoma cell line, NCI-H820, harbors MET amplification in addition to a drug-sensitive EGFR mutation and the T790M change. Growth inhibition studies demonstrate that these cells are resistant to both erlotinib and an irreversible EGFR inhibitor (CL-387,785) but sensitive to a multikinase inhibitor (XL880) with potent activity against MET. Taken together, these data suggest that MET amplification occurs independently of EGFRT⁷⁹⁰M mutations and that MET may be a clinically relevant therapeutic target for some patients with acquired resistance to gefitinib or erlotinib.
Targeting YAP to overcome acquired resistance to ALK inhibitors in ALK‐rearranged lung cancer
Clinical benefit of ALK tyrosine kinase inhibitors (ALK‐TKIs) in ALK ‐rearranged lung cancer has been limited by the inevitable development of acquired resistance, and bypass‐molecular resistance mechanisms remain poorly understood. We investigated a novel therapeutic target through screening FDA‐approved drugs in ALK‐TKI‐resistant models. Cerivastatin, the rate‐limiting enzyme inhibitor of the mevalonate pathway, showed anti‐cancer activity against ALK‐TKI resistance in vitro / in vivo , accompanied by cytoplasmic retention and subsequent inactivation of transcriptional co‐regulator YAP. The marked induction of YAP‐targeted oncogenes (EGFR, AXL, CYR61, and TGFβR2) in resistant cells was abolished by cerivastatin. YAP silencing suppressed tumor growth in resistant cells, patient‐derived xenografts, and EML4‐ALK transgenic mice, whereas YAP overexpression decreased the responsiveness of parental cells to ALK inhibitor. In matched patient samples before/after ALK inhibitor treatment, nuclear accumulation of YAP was mainly detected in post‐treatment samples. High expression of YAP in pretreatment samples was correlated with poor response to ALK‐TKIs. Our findings highlight a crucial role of YAP in ALK‐TKI resistance and provide a rationale for targeting YAP as a potential treatment option for ALK ‐rearranged patients with acquired resistance to ALK inhibitors. Synopsis Acquired resistance to targeted therapy is a major challenge in treatment for ALK‐rearranged NSCLC. The transcriptional activation of YAP induces multiple resistance factors, conferring acquired resistance to ALK‐TKIs. Statins represent proxy inhibitors to overcome YAP‐mediated drug resistance. ALK‐TKIs‐resistant cells undergo morphological changes and cell growth in ALK‐independent manner. YAP shows a lower phosphorylation levels and predominant nuclear localization in ALK‐TKIs‐resistant cells. Depletion of YAP suppresses tumor growth and induction of oncogenes such as AXL, EGFR, and TGFβR2 in resistant models. Ectopic expression of wild‐type or constitutively active YAP confers resistance to crizotinib. Statins overcome YAP‐mediated drug resistance by blocking critical downstream targets of YAP. Graphical Abstract Acquired resistance to targeted therapy is a major challenge in treatment for ALK‐rearranged NSCLC. The transcriptional activation of YAP induces multiple resistance factors, conferring acquired resistance to ALK‐TKIs. Statins represent proxy inhibitors to overcome YAP‐mediated drug resistance.
Emerging therapies targeting the delta-like ligand 3 (DLL3) in small cell lung cancer
Small cell lung cancer (SCLC) is an aggressive neuroendocrine carcinoma with a poor prognosis. Initial responses to standard-of-care chemo-immunotherapy are, unfortunately, followed by rapid disease recurrence in most patients. Current treatment options are limited, with no therapies specifically approved as third-line or beyond. Delta-like ligand 3 (DLL3), a Notch inhibitory ligand, is an attractive therapeutic target because it is overexpressed on the surface of SCLC cells with minimal to no expression on normal cells. Several DLL3-targeted therapies are being developed for the treatment of SCLC and other neuroendocrine carcinomas, including antibody-drug conjugates (ADCs), T-cell engager (TCE) molecules, and chimeric antigen receptor (CAR) therapies. First, we discuss the clinical experience with rovalpituzumab tesirine (Rova-T), a DLL3-targeting ADC, the development of which was halted due to a lack of efficacy in phase 3 studies, with a view to understanding the lessons that can be garnered for the rapidly evolving therapeutic landscape in SCLC. We then review preclinical and clinical data for several DLL3-targeting agents that are currently in development, including the TCE molecules—tarlatamab (formerly known as AMG 757), BI 764532, and HPN328—and the CAR T-cell therapy AMG 119. We conclude with a discussion of the future challenges and opportunities for DLL3-targeting therapies, including the utility of DLL3 as a biomarker for patient selection and disease progression, and the potential of rational combinatorial approaches that can enhance efficacy.
Tiragolumab plus atezolizumab versus placebo plus atezolizumab as a first-line treatment for PD-L1-selected non-small-cell lung cancer (CITYSCAPE): primary and follow-up analyses of a randomised, double-blind, phase 2 study
Targeted inhibition of the PD-L1–PD-1 pathway might be further amplified through combination of PD-1 or PD-L1 inhibitors with novel anti-TIGIT inhibitory immune checkpoint agents, such as tiragolumab. In the CITYSCAPE trial, we aimed to assess the preliminary efficacy and safety of tiragolumab plus atezolizumab (anti-PD-L1) therapy as first-line treatment for non-small-cell lung cancer (NSCLC). CITYSCAPE is a phase 2, randomised, double-blind, placebo-controlled trial. Patients with chemotherapy-naive, PD-L1-positive (defined as a tumour proportion score of ≥1% by 22C3 immunohistochemistry pharmDx assay; Dako, Agilent Technologies, Santa Clara, CA, USA) recurrent or metastatic NSCLC with measurable disease, Eastern Cooperative Oncology Group performance status of 0 or 1, and no EGFR or ALK alterations were enrolled from 41 clinics in Europe, Asia, and the USA. Patients were randomly assigned (1:1), via an interactive voice or web-based response system, to receive tiragolumab (600 mg) plus atezolizumab (1200 mg) or placebo plus atezolizumab intravenously once every 3 weeks. Investigators and patients were masked to treatment assignment. The co-primary endpoints were investigator-assessed objective response rate and progression-free survival as per Response Evaluation Criteria in Solid Tumors version 1.1 in the intention-to-treat population, analysed after approximately 80 progression-free survival events had been observed in the primary population. Safety was assessed in all patients who received at least one dose of study drug. This trial is registered with ClinicalTrials.gov, NCT03563716, and is ongoing. Patients were enrolled between Aug 10, 2018, and March 20, 2019. At data cutoff for the primary analysis (June 30, 2019), 135 of 275 patients assessed for eligibility were randomly assigned to receive tiragolumab plus atezolizumab (67 [50%]) or placebo plus atezolizumab (68 [50%]). In this primary analysis, after a median follow-up of 5·9 months (4·6–7·6, in the intention-to-treat population, 21 patients (31·3% [95% CI 19·5–43·2]) in the tiragolumab plus atezolizumab group versus 11 patients (16·2% [6·7–25·7]) in the placebo plus atezolizumab group had an objective response (p=0·031). Median progression-free survival was 5·4 months (95% CI 4·2–not estimable) in the tiragolumab plus atezolizumab group versus 3·6 months (2·7–4·4) in the placebo plus atezolizumab group (stratified hazard ratio 0·57 [95% CI 0·37–0·90], p=0·015). 14 (21%) patients receiving tiragolumab plus atezolizumab and 12 (18%) patients receiving placebo plus atezolizumab had serious treatment-related adverse events. The most frequently reported grade 3 or worse treatment-related adverse event was lipase increase (in six [9%] patients in the tiragolumab plus atezolizumab group vs two [3%] in the placebo plus atezolizumab group). Two treatment-related deaths (of pyrexia and infection) occurred in the tiragolumab plus atezolizumab group. Tiragolumab plus atezolizumab showed a clinically meaningful improvement in objective response rate and progression-free survival compared with placebo plus atezolizumab in patients with chemotherapy-naive, PD-L1-positive, recurrent or metastatic NSCLC. Tiragolumab plus atezolizumab was well tolerated, with a safety profile generally similar to that of atezolizumab alone. These findings demonstrate that tiragolumab plus atezolizumab is a promising immunotherapy combination for the treatment of previously untreated, locally advanced unresectable or metastatic NSCLC. F Hoffmann-La Roche and Genentech.
Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: interim results from a multicentre, open-label, phase 1b study
Preclinical data suggest that EGFR tyrosine kinase inhibitors (TKIs) plus MET TKIs are a possible treatment for EGFR mutation-positive lung cancers with MET-driven acquired resistance. Phase 1 safety data of savolitinib (also known as AZD6094, HMPL-504, volitinib), a potent, selective MET TKI, plus osimertinib, a third-generation EGFR TKI, have provided recommended doses for study. Here, we report the assessment of osimertinib plus savolitinib in two global expansion cohorts of the TATTON study. In this multi-arm, multicentre, open-label, phase 1b study, we enrolled adult patients (aged ≥18 years) with locally advanced or metastatic, MET-amplified, EGFR mutation-positive non-small-cell lung cancer, who had progressed on EGFR TKIs. We considered two expansion cohorts: parts B and D. Part B consisted of three cohorts of patients: those who had been previously treated with a third-generation EGFR TKI (B1) and those who had not been previously treated with a third-generation EGFR TKI who were either Thr790Met negative (B2) or Thr790Met positive (B3). In part B, patients received oral osimertinib 80 mg and savolitinib 600 mg daily; after a protocol amendment (March 12, 2018), patients who weighed no more than 55 kg received a 300 mg dose of savolitinib. Part D enrolled patients who had not previously received a third-generation EGFR TKI and were Thr790Met negative; these patients received osimertinib 80 mg plus savolitinib 300 mg. Primary endpoints were safety and tolerability, which were assessed in all dosed patients. Secondary endpoints included the proportion of patients who had an objective response per RECIST 1.1 and was assessed in all dosed patients and all patients with centrally confirmed MET amplification. Here, we present an interim analysis with data cutoff on March 29, 2019. This study is registered with ClinicalTrials.gov, NCT02143466. Between May 26, 2015, and Feb 14, 2019, we enrolled 144 patients into part B and 42 patients into part D. In part B, 138 patients received osimertinib plus savolitinib 600 mg (n=130) or 300 mg (n=8). In part D, 42 patients received osimertinib plus savolitinib 300 mg. 79 (57%) of 138 patients in part B and 16 (38%) of 42 patients in part D had adverse events of grade 3 or worse. 115 (83%) patients in part B and 25 (60%) patients in part D had adverse events possibly related to savolitinib and serious adverse events were reported in 62 (45%) patients in part B and 11 (26%) patients in part D; two adverse events leading to death (acute renal failure and death, cause unknown) were possibly related to treatment in part B. Objective partial responses were observed in 66 (48%; 95% CI 39–56) patients in part B and 23 (64%; 46–79) in part D. The combination of osimertinib and savolitinib has acceptable risk–benefit profile and encouraging antitumour activity in patients with MET-amplified, EGFR mutation-positive, advanced NSCLC, who had disease progression on a previous EGFR TKI. This combination might be a potential treatment option for patients with MET-driven resistance to EGFR TKIs. AstraZeneca.
Slug Confers Resistance to the Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor
Non-small cell lung cancers carrying epidermal growth factor receptor (EGFR) mutations respond well to EGFR tyrosine kinase inhibitors (TKIs), but patients ultimately develop drug resistance and relapse. Although epithelial-mesenchymal transition (EMT) can predict resistance to EGFR TKIs, the molecular mechanisms are still unknown. To examine the role of EMT regulators in resistance to gefitinib. The expression level of EMT regulators in gefitinib-sensitive cells (PC9) and gefitinib-resistant cells (PC9/gef) was determined using quantitative real-time reverse transcription-polymerase chain reaction and Western blot analysis. Molecular manipulations (silencing or overexpression) were performed to investigate the effects of EMT regulators on gefitinib resistance in vitro, and a xenograft mouse model was used for in vivo confirmation. In addition, cancer cells from 44 patients with malignant pleural effusions of lung adenocarcinoma were collected for analysis of EMT regulator mRNA by quantitative real-time reverse transcription-polymerase chain reaction. Slug expression, but not that of snail, twist, or zeb-1, was significantly increased in PC9/gef compared with PC9 cells. Slug knockdown in PC9/gef cells reversed resistance to gefitinib, and overexpression of Slug in PC9 cells protected cells from gefitinib-induced apoptosis. Silencing of Slug in gefitinib-resistant cells restored gefitinib-induced apoptosis primarily through Bim up-regulation and activation of caspase-9. Slug enhanced tumor growth in a xenograft mouse model, even with gefitinib treatment. In clinical samples, Slug expression was significantly higher in cancer cells with resistance to EGFR TKIs than in treatment-naive cancer cells. Slug contributes to the resistance to gefitinib and may be a potential therapeutic target for treating resistance to EGFR TKIs.