Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
257 result(s) for "Yang, Chunbo"
Sort by:
Polysaccharide Hydrogel Combined with Mesenchymal Stem Cells Promotes the Healing of Corneal Alkali Burn in Rats
Corneal chemical burns are common ophthalmic injuries that may result in permanent visual impairment. Although significant advances have been achieved on the treatment of such cases, the structural and functional restoration of a chemical burn-injured cornea remains challenging. The applications of polysaccharide hydrogel and subconjunctival injection of mesenchymal stem cells (MSCs) have been reported to promote the healing of corneal wounds. In this study, polysaccharide was extracted from Hardy Orchid and mesenchymal stem cells (MSCs) were derived from Sprague-Dawley rats. Supplementation of the polysaccharide significantly enhanced the migration rate of primarily cultured rat corneal epithelial cells. We examined the therapeutic effects of polysaccharide in conjunction with MSCs application on the healing of corneal alkali burns in rats. Compared with either treatment alone, the combination strategy resulted in significantly better recovery of corneal epithelium and reduction in inflammation, neovascularization and opacity of healed cornea. Polysaccharide and MSCs acted additively to increase the expression of anti-inflammatory cytokine (TGF-β), antiangiogenic cytokine (TSP-1) and decrease those promoting inflammation (TNF-α), chemotaxis (MIP-1α and MCP-1) and angiogenesis (VEGF and MMP-2). This study provided evidence that Hardy Orchid derived polysaccharide and MSCs are safe and effective treatments for corneal alkali burns and that their benefits are additive when used in combination. We concluded that combination therapy with polysaccharide and MSCs is a promising clinical treatment for corneal alkali burns and may be applicable for other types of corneal disorder.
The association between serum testosterone levels and metabolic syndrome among women
Background This study aimed to investigate the relationship between total serum testosterone level (TT) and metabolic syndrome (MetS) among adult female population. Subgroup analysis further stratified the population by menopausal status to address the potential hormonal difference in postmenopausal women. Methods A total of 1966 participants from the National Health and Nutrition Examination Survey (NHANES) 2011–2012 cycle was included for analysis in this study. MetS was defined based on the National Cholesterol Education Program Adult Treatment Panel III guidelines. Serum TT was collected during the physical examination of the NHANES program and divided into quartiles (Q) in this analysis. Menopausal status was determined based on NHANES Reproductive Health Questionnaire. Logistic regression models were applied for analysis. Results The odds of MetS in Q2: 12.99–19.38 ng/mL (OR = 0.641, 95%CI 0.493–0.835, P < 0.01), Q3: 19.39–28.38 ng/mL (OR = 0.476, 95%CI 0.362–0.626, P < 0.001), and Q4: ≥28.40 ng/mL (OR = 0.390, 95%CI 0.294–0.517, P < 0.001) were statistically lower compared to the reference Q1: <12.99 ng/mL. For the postmenopausal group, a significantly lower odds of MetS was observed in the Q2 (OR = 0.689, 95%CI 0.486–0.977, P < 0.05) and Q4 (OR = 0.606, 95%CI 0.399–0.922, P < 0.05), while the odds of Q3 (OR = 0.439, 95%CI 0.248–0.779, P < 0.01) and Q4 (OR = 0.464, 95%CI 0.261–0.825, P < 0.01) were significantly lower than the reference Q1 in the premenopausal group. Conclusions Elevated TT levels are associated with incremental reductions in the odds of metabolic syndrome among adult females. Although, serum testosterone level is associated with the occurrence of metabolic syndrome in both the postmenopausal and the premenopausal group, the patterns of the relationship are different.
Targeting QKI-7 in vivo restores endothelial cell function in diabetes
Vascular endothelial cell (EC) dysfunction plays a key role in diabetic complications. This study discovers significant upregulation of Quaking-7 (QKI-7) in iPS cell-derived ECs when exposed to hyperglycemia, and in human iPS-ECs from diabetic patients. QKI-7 is also highly expressed in human coronary arterial ECs from diabetic donors, and on blood vessels from diabetic critical limb ischemia patients undergoing a lower-limb amputation. QKI-7 expression is tightly controlled by RNA splicing factors CUG-BP and hnRNPM through direct binding. QKI-7 upregulation is correlated with disrupted cell barrier, compromised angiogenesis and enhanced monocyte adhesion. RNA immunoprecipitation (RIP) and mRNA-decay assays reveal that QKI-7 binds and promotes mRNA degradation of downstream targets CD144, Neuroligin 1 (NLGN1), and TNF-α-stimulated gene/protein 6 (TSG-6). When hindlimb ischemia is induced in diabetic mice and QKI-7 is knocked-down in vivo in ECs, reperfusion and blood flow recovery are markedly promoted. Manipulation of QKI-7 represents a promising strategy for the treatment of diabetic vascular complications. Vascular endothelial cell (EC) dysfunction contributes to the occurrence of diabetic complications. Here the authors report that in diabetic conditions, upregulation of the RNA binding protein QKI-7 in ECs due to the imbalance of RNA splicing factors CUG-BP and hnRNPM contributes to EC dysfunction, and that in vivo QKI-7 silencing improves blood flow recovery in diabetic mice with limb ischemia.
Human embryonic stem cell-derived extracellular vesicles alleviate retinal degeneration by upregulating Oct4 to promote retinal Müller cell retrodifferentiation via HSP90
Objective Retinal degenerative diseases remain the dominant causes of blindness worldwide, and cell replacement is viewed as a promising therapeutic direction. However, the resources of seed cells are hard to obtain. To further explore this therapeutic approach, human embryonic stem extracellular vesicles (hESEVs) were extracted from human embryonic stem cells (hESCs) to inspect its effect and the possible mechanism on retinal Müller cells and retinal function. Methods hESEVs were extracted by multi-step differential centrifugation, whose morphologies and specific biomarkers (TSG101, CD9, CD63, and CD81) were observed and measured. After hESEVs were injected into the vitreous cavity of RCS rats, the retinal tissues and retinal functions of rats were assessed. The alteration of Müller cells and retinal progenitor cells was also recorded. Microvesicles (MVs) or exosomes (EXOs) were extracted from hESCs transfected with sh-HSP90 or pcDNA3.1-HSP9, and then incubated with Müller cells to measure the uptake of EVs, MVs, or EXOs in Müller cells by immunofluorescence. The retrodifferentiation of Müller cells was determined by measuring Vimentin and CHX10. qRT-PCR and western blot were used to detect HSP90 expression in MVs and evaluate Oct4 level in Müller cells, and Co-IP to inspect the interaction of HSP90 and Oct4. Results RCS rats at the postnatal 30 days had increased retinal progenitor cells which were dedifferentiated from Müller cells. hESEVs were successfully extracted from hESCs, evidenced by morphology observation and positive expressions of specific biomarkers (TSG101, CD9, CD63, and CD81). hESEVs promoted Müller cells dedifferentiated and retrodifferentiated into retinal progenitor cells evidenced by the existence of a large amount of CHX10-positive cells in the retinal inner layer of RCS rats in response to hESEV injection. The promotive role of hESEVs was exerted by MVs demonstrated by elevated fluorescence intensity of CHX10 and suppressed Vimentin fluorescence intensity in MVs rather than in EXOs. HSP90 in MVs inhibited the retrodifferentiation of Müller cells and suppressed the expression level of Oct4 in Müller cells. Co-IP revealed that HSP90 can target Oct4 in Müller cells. Conclusion hESEVs could promote the retrodifferentiation of Müller cells into retinal progenitor cells by regulating the expression of Oct4 in Müller cells by HSP90 mediation in MVs.
PRPF8-mediated dysregulation of hBrr2 helicase disrupts human spliceosome kinetics and 5´-splice-site selection causing tissue-specific defects
The carboxy-terminus of the spliceosomal protein PRPF8 , which regulates the RNA helicase Brr2, is a hotspot for mutations causing retinitis pigmentosa-type 13, with unclear role in human splicing and tissue-specificity mechanism. We used patient induced pluripotent stem cells-derived cells, carrying the heterozygous PRPF8 c.6926 A > C (p.H2309P) mutation to demonstrate retinal-specific endophenotypes comprising photoreceptor loss, apical-basal polarity and ciliary defects. Comprehensive molecular, transcriptomic, and proteomic analyses revealed a role of the PRPF8/Brr2 regulation in 5’-splice site (5’SS) selection by spliceosomes, for which disruption impaired alternative splicing and weak/suboptimal 5’SS selection, and enhanced cryptic splicing, predominantly in ciliary and retinal-specific transcripts. Altered splicing efficiency, nuclear speckles organisation, and PRPF8 interaction with U6 snRNA, caused accumulation of active spliceosomes and poly(A)+ mRNAs in unique splicing clusters located at the nuclear periphery of photoreceptors. Collectively these elucidate the role of PRPF8/Brr2 regulatory mechanisms in splicing and the molecular basis of retinal disease, informing therapeutic approaches. PRPF8 is a hotspot for mutations causing retinitis pigmentosa-type 13. Here the authors generated PRPF8 patient-specific retinal cells, demonstrating an important role for this splicing factor in spliceosome kinetics and 5’ splice site selection.
Pre-mRNA Processing Factors and Retinitis Pigmentosa: RNA Splicing and Beyond
Retinitis pigmentosa (RP) is the most common inherited retinal disease characterized by progressive degeneration of photoreceptors and/or retinal pigment epithelium that eventually results in blindness. Mutations in pre-mRNA processing factors ( PRPF3, 4, 6, 8, 31, SNRNP200, and RP9 ) have been linked to 15–20% of autosomal dominant RP (adRP) cases. Current evidence indicates that PRPF mutations cause retinal specific global spliceosome dysregulation, leading to mis-splicing of numerous genes that are involved in a variety of retina-specific functions and/or general biological processes, including phototransduction, retinol metabolism, photoreceptor disk morphogenesis, retinal cell polarity, ciliogenesis, cytoskeleton and tight junction organization, waste disposal, inflammation, and apoptosis. Importantly, additional PRPF functions beyond RNA splicing have been documented recently, suggesting a more complex mechanism underlying PRPF -RPs driven disease pathogenesis. The current review focuses on the key RP- PRPF genes, depicting the current understanding of their roles in RNA splicing, impact of their mutations on retinal cell’s transcriptome and phenome, discussed in the context of model species including yeast, zebrafish, and mice. Importantly, information on PRPF functions beyond RNA splicing are discussed, aiming at a holistic investigation of PRPF -RP pathogenesis. Finally, work performed in human patient-specific lab models and developing gene and cell-based replacement therapies for the treatment of PRPF -RPs are thoroughly discussed to allow the reader to get a deeper understanding of the disease mechanisms, which we believe will facilitate the establishment of novel and better therapeutic strategies for PRPF -RP patients.
Effect of Sivelestat in the Treatment of Acute Lung Injury and Acute Respiratory Distress Syndrome: A Systematic Review and Meta-Analysis
Background The efficacy of neutrophil elastase inhibitor sivelestat in the treatment of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) remains controversial. A systematic review and meta-analysis were performed in accordance with the PRISMA guidelines assess the effect of sivelestat on ALI/ARDS patients, different studies were included. Methods Electronic databases, National Knowledge Infrastructure (CNKI), Wan fang data, VIP, PubMed, Embase, Springer, Ovid and the Cochrane Library were searched using the following key words: (“Sivelestat” OR “Elaspol”) AND (“ARDS” OR “adult respiratory distress syndrome” OR “acute lung injury”). All databases published from January 2000 to August 2022. The treatment group was treated with sivelestat and the control group was given normal saline. The outcome measurements include the mortality of 28–30 days, mechanical ventilation time, ventilation free days, intensive care unit (ICU) stays, oxygenation index (PaO 2 /FiO 2 ) on day 3, the incidence of adverse events. The literature search was conducted independently by 2 researchers using standardized methods. We used the Cochrane risk-of-bias tool to assess the quality of the included studies. Mean difference (MD), Standardized mean difference (SMD) and relative risk (RR) were calculated using random effects model or fixed effects model. All statistical analyses were performed using RevMan software 5.4. Results A total of 2050 patients were enrolled in 15 studies, including 1069 patients in treatment group and 981 patients in the control group. The results of the meta-analysis showed that: compared with the control group, sivelestat can reduce the mortality of 28–30 days (RR = 0.81, 95% CI = 0.66–0.98, p  = 0.03) and the incidence of adverse events (RR = 0.91, 95% CI = 0.85–0.98, p  = 0.01), shortened mechanical ventilation time (SMD = − 0.32, 95% CI = − 0.60 to − 0.04, p  = 0.02) and ICU stays (SMD = − 0.72, 95% CI = − 0.92 to − 0.52, p  < 0.00001), increased the ventilation free days (MD = 3.57, 95% CI = 3.42–3.73, p <  0.00001) and improve oxygenation index (PaO 2 /FiO 2 ) on day 3 (SMD = 0.88, 95% CI = 0.39–1.36, p  = 0.0004). Conclusions Sivelestat can not only reduce the mortality of ALI/ARDS patients within 28–30 days and the incidence of adverse events, shorten the mechanical ventilation time and ICU stays, increase ventilation free days, but also improve the oxygenation index of patients on days 3, which has a good effect on the treatment of ALI/ARDS. These findings need to be verified in large-scale trials.
Clinical Utility of the Sivelestat for the Treatment of ALI/ARDS: Moving on in the Controversy?
Acute respiratory distress syndrome (ARDS) is a serious condition that can arise following direct or indirect acute lung injury (ALI). It is heterogeneous and has a high mortality rate. Supportive care is the mainstay of treatment and there is no definitive pharmacological treatment as yet. In nonclinical studies, neutrophil elastase inhibitor sivelestat appears to show benefit in ARDS without inhibiting the host immune defense in cases of infection. In clinical studies, the efficacy of sivelestat in the treatment of ARDS remains controversial. The currently available evidence suggests that sivelestat may show some benefit in the treatment of ARDS, although large, randomized controlled trials are needed in specific pathophysiological conditions to explore these potential benefits.
Fusarium Species Associated with Maize Leaf Blight in Heilongjiang Province, China
Fusarium spp. are among the most important plant pathogens in the world. A survey on maize leaf blight was carried out in Heilongjiang province from 2019 to 2021. Based on morphological characteristics and a phylogenetic analysis on translation elongation factor (tef1) and second-largest subunit of RNA polymerase II (rpb2) genes, 146 Fusarium isolates were obtained and grouped into 14 Fusarium species, including F. ipomoeae (20.5%), F. compactum (17.1%), F. sporotrichioides (9.59%), F. graminearum (9.59%), F. citri (8.9%), F. asiaticum (6.85%), F. verticillioides (6.85%), F. acuminatum (5.48%), F. glycines (5.48%), F. temperatum (2.74%), F. armeniacum (2.74%), Fusarium sp. (2.05%), F. flagelliforme (1.4%), and F. annulatum (0.68%). The Fusarium incarnatum-equiseti species complex (FIESC, including F. ipomoeae, F. compactum, F. citri, and F. flagelliforme) was the most prevalent, indicating an evolving occurrence of the Fusarium species causing maize leaf blight. The typical symptoms observed on the maize leaves were oval to long strip lesions, with a gray to dark gray or brownish red coloration in the center and a chlorotic area at the edges. Based on the tef1 gene, seven haplotypes of FIESC were identified in Heilongjiang province, suggesting a population expansion. This is the first report of F. ipomoeae, F. compactum, F. flagelliforme, F. citri, F. sporotrichioides, F. graminearum, F. asiaticum, F. acuminatum, F. glycines, F. temperatum, F. armeniacum, Fusarium sp., and F. annulatum causing maize leaf blight in Heilongjiang province, China. The current research is informative for managing disease, exploring the phylogenetic relationship among Fusarium species, and clarifying the diversity of Fusarium species associated with maize leaf blight.
Author Correction: Targeting QKI-7 in vivo restores endothelial cell function in diabetes
An amendment to this paper has been published and can be accessed via a link at the top of the paper.An amendment to this paper has been published and can be accessed via a link at the top of the paper.