Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
686 result(s) for "Yang, Fang-yuan"
Sort by:
Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development
To discover new drugs to combat COVID-19, an understanding of the molecular basis of SARS-CoV-2 infection is urgently needed. Here, for the first time, we report the crucial role of cathepsin L (CTSL) in patients with COVID-19. The circulating level of CTSL was elevated after SARS-CoV-2 infection and was positively correlated with disease course and severity. Correspondingly, SARS-CoV-2 pseudovirus infection increased CTSL expression in human cells in vitro and human ACE2 transgenic mice in vivo, while CTSL overexpression, in turn, enhanced pseudovirus infection in human cells. CTSL functionally cleaved the SARS-CoV-2 spike protein and enhanced virus entry, as evidenced by CTSL overexpression and knockdown in vitro and application of CTSL inhibitor drugs in vivo. Furthermore, amantadine, a licensed anti-influenza drug, significantly inhibited CTSL activity after SARS-CoV-2 pseudovirus infection and prevented infection both in vitro and in vivo. Therefore, CTSL is a promising target for new anti-COVID-19 drug development.
Plasma metabolomic profiling of proliferative diabetic retinopathy
Background Proliferative diabetic retinopathy (PDR), a sight-threatening retinopathy, is the leading cause of irreversible blindness in adults. Despite strict control of systemic risk factors, a fraction of patients with diabetes develop PDR, suggesting the existence of other potential pathogenic factors underlying PDR. This study aimed to investigate the plasma metabotype of patients with PDR and to identify novel metabolite markers for PDR. Biomarkers identified from this study will provide scientific insight and new strategies for the early diagnosis and intervention of diabetic retinopathy. Methods A total of 1024 patients with type 2 diabetes were screened. To match clinical parameters between case and control subjects, patients with PDR (PDR, n  = 21) or those with a duration of diabetes of ≥10 years but without diabetic retinopathy (NDR, n  = 21) were assigned to the present case-control study. Distinct metabolite profiles of serum were examined using liquid chromatography-mass spectrometry (LC-MS). Results The distinct metabolites between PDR and NDR groups were significantly enriched in 9 KEGG pathways ( P  < 0.05, impact > 0.1), namely, alanine, aspartate and glutamate metabolism, caffeine metabolism, beta-alanine metabolism, purine metabolism, cysteine and methionine metabolism, sulfur metabolism, sphingosine metabolism, and arginine and proline metabolism. A total of 63 altered metabolites played important roles in these pathways. Finally, 4 metabolites were selected as candidate biomarkers for PDR, namely, fumaric acid, uridine, acetic acid, and cytidine. The area under the curve for these biomarkers were 0.96, 0.95, 1.0, and 0.95, respectively. Conclusions This study suggested that impairment in the metabolism of pyrimidines, arginine and proline were identified as metabolic dysregulation associated with PDR. And fumaric acid, uridine, acetic acid, and cytidine might be potential biomarkers for PDR. Fumaric acid was firstly reported as a novel metabolite marker with no prior reports of association with diabetes or diabetic retinopathy, which might provide insights into potential new pathogenic pathways for diabetic retinopathy.
Rapid and Repeated Climate Adaptation Involving Chromosome Inversions following Invasion of an Insect
Following invasion, insects can become adapted to conditions experienced in their invasive range, but there are few studies on the speed of adaptation and its genomic basis. Here, we examine a small insect pest, Thrips palmi, following its contemporary range expansion across a sharp climate gradient from the subtropics to temperate areas. We first found a geographically associated population genetic structure and inferred a stepping-stone dispersal pattern in this pest from the open fields of southern China to greenhouse environments of northern regions, with limited gene flow after colonization. In common garden experiments, both the field and greenhouse groups exhibited clinal patterns in thermal tolerance as measured by critical thermal maximum (CTmax) closely linked with latitude and temperature variables. A selection experiment reinforced the evolutionary potential of CTmax with an estimated h2 of 6.8% for the trait. We identified 3 inversions in the genome that were closely associated with CTmax, accounting for 49.9%, 19.6%, and 8.6% of the variance in CTmax among populations. Other genomic variations in CTmax outside the inversion region were specific to certain populations but functionally conserved. These findings highlight rapid adaptation to CTmax in both open field and greenhouse populations and reiterate the importance of inversions behaving as large-effect alleles in climate adaptation.
ACE2 pathway regulates thermogenesis and energy metabolism
Identification of key regulators of energy homeostasis holds important therapeutic promise for metabolic disorders, such as obesity and diabetes. ACE2 cleaves angiotensin II (Ang II) to generate Ang-(1-7) which acts mainly through the Mas1 receptor. Here, we identify ACE2 pathway as a critical regulator in the maintenance of thermogenesis and energy expenditure. We found that ACE2 is highly expressed in brown adipose tissue (BAT) and that cold stimulation increases ACE2 and Ang-(1-7) levels in BAT and serum. Ace2 knockout mice ( Ace2 -/y ) and Mas1 knockout mice ( Mas1 -/- ) displayed impaired thermogenesis. Mice transplanted with brown adipose tissue from Mas1 -/- display metabolic abnormalities consistent with those seen in the Ace2 and Mas1 knockout mice. In contrast, impaired thermogenesis of Lepr db/db obese diabetic mice and high-fat diet-induced obese mice were ameliorated by overexpression of Ace2 or continuous infusion of Ang-(1-7). Activation of ACE2 pathway was associated with improvement of metabolic parameters, including blood glucose, lipids, and energy expenditure in multiple animal models. Consistently, ACE2 pathway remarkably enhanced the browning of white adipose tissue. Mechanistically, we showed that ACE2 pathway activated Akt/FoxO1 and PKA pathway, leading to induction of UCP1 and activation of mitochondrial function. Our data propose that adaptive thermogenesis requires regulation of ACE2 pathway and highlight novel potential therapeutic targets for the treatment of metabolic disorders.
Plasma metabolomic profiling of diabetic macular edema
Diabetic macular edema (DME), a sight-threatening retinopathy, is a leading cause of vision loss in persons with diabetes mellitus. Despite strict control of systemic risk factors, a fraction of patients with diabetes developed DME, suggesting the existence of other potential pathogenic factors underlying DME. This study aimed to investigate the plasma metabotype of patients with DME and to identify novel metabolite markers for DME. Biomarkers identified from this study will provide scientific insight and new strategies for the early diagnosis and intervention of DME. To match clinical parameters between case and control subjects, patients with DME (DME, n  = 30) or those with diabetes but without DME (Control, n  = 30) were assigned to the present case-control study. Distinct metabolite profiles of serum were examined using liquid chromatography-mass spectrometry (LC-MS). A total of 190 distinct metabolites between DME and Control groups were identified (VIP > 1, Fold Change > 1.5 or < 0.667, and P  < 0.05). The distinct metabolites between DME and Control groups were enriched in 4 KEGG pathways, namely, Glutamate Metabolism, Carnitine Synthesis, Oxidation of Branched Chain Fatty Acids, and Phytanic Acid Peroxisomal Oxidation. Finally, 4 metabolites were selected as candidate biomarkers for DME, namely, 5-Phospho-beta-D-ribosylamine, Succinic acid, Ascorbyl glucoside, and Glutathione disulfide. The area under the curve for these biomarkers were 0.693, 0.772, 0.762, and 0.771, respectively. This study suggested that impairment in the metabolism and 4 potential metabolites were identified as metabolic dysregulation associated with DME, which might provide insights into potential new pathogenic pathways for DME. 5-Phospho-beta-D-ribosylamine was first identified as a novel metabolite marker, with no previous reports linking it to diabetes or DME. This discovery may offer valuable insights into potential new pathogenic pathways associated with DME.
Neutrophil Extracellular Traps in Autoimmune Diseases
NETs deliver multiple autoantigens to host immune system that induce autoimmune responses and directly release damage-associated molecular patterns to amplify inflammatory responses. [...]NETs are commonly described to play a crucial role in the pathogenesis and development of autoimmune diseases in recent years. [...]the citrullination is commonly present in rheumatoid arthritis (RA) (this part will be discussed in detail later). [...]these PTMs of NET proteins play important roles in the development of inflammatory responses in autoimmune diseases. [39] The self-DNA-LL37 complex is transported to endosomal TLR9 of pDCs, eventually triggering the secretion of IFN-α. [...]the complex comprised of self-RNA and LL37 can induce the activation of classical myeloid DCs to produce pro-inflammatory cytokines, such as TNF-α and IL-6, in TLR7 and TLR8-dependent manners. [60] Particularly, NETs can activate the NLRP3 inflammasome to release IL-18 which in turn induces NET formation. [...]inhibition of NRLP3 inflammasome or targeting IL-18 by monoclonal antibody can interrupt this feed-forward loop and would be more effective strategies for treating NETosis-related diseases.
Chromosome-level genome assembly of the Japanese sawyer beetle Monochamus alternatus
The Japanese sawyer beetle Monochamus alternatus (Coleoptera: Cerambycidae) is a pest in pine forests and acts as a vector for the pine wood nematode Bursaphelenchus xylophilus , which causes the pine wilt disease. We assembled a high-quality genome of M. alternatus at the chromosomal level using Illumina, Nanopore, and Hi-C sequencing technologies. The assembled genome is 767.12 Mb, with a scaffold N50 of 82.0 Mb. All contigs were assembled into ten pseudo-chromosomes. The genome contains 63.95% repeat sequences. We identify 16, 284 protein-coding genes in the genome, of which 11,244 were functionally annotated. The high-quality genome of M. alternatus provides an invaluable resource for the biological, ecological, and genetic study of this beetle and opens new avenues for understanding the transmission of pine wood nematode by insect vectors.
A Pathway Analysis Based on Genome-Wide DNA Methylation of Chinese Patients with Graves’ Orbitopathy
Background. The pathogenesis Graves’ Orbitopathy (GO) is not yet fully understood. Here, we conducted a pathway analysis based on genome-wide DNA methylation data of Chinese GO patients to explore GO-related pathways and potential feature genes. Methods. Six GO patients and 6 age-matched control individuals were recruited, and a genome-scale screen of DNA methylation was measured using their peripheral blood sample. After extracting the differentially methylated regions (DMRs), we classified DMRs into three clusters with respect to median absolute deviation (MAD) for GO and control group, respectively. Then the extract tests were performed to identify significant pathways by comparing the counts of genes in each cluster between GO and control group in a pathway. For each significant pathway, we calculated the Methylation-based Inference of Regulatory Activity (MIRA) score to infer the regulatory activity of genes involved in the pathway. Furthermore, we took the significant pathways as the subsets and applied Random forests (RF) method to extract GO-related feature genes. Results. We identified four potential significant pathways associated with the occurrence and development of GO disease. There were Toxoplasmosis, Axon guidance, Focal adhesion, and Proteoglycans in cancer (p<0.001 or p=0.007). The identified genes involved in the significant pathways, such as LDLR (p=0.019), CDK5 (p=0.036), and PIK3CB (p=0.020), were found to be correlated with GO phenotype. Conclusion. Our study suggested pathway analyses can help understand the potential relationships between the DNA methylation level of some certain genes and their regulation in Chinese GO patients.
Accurate prediction of acute pancreatitis severity based on genome-wide cell free DNA methylation profiles
Background Patients with severe acute pancreatitis (SAP) have a high mortality, thus early diagnosis and interventions are critical for improving survival. However, conventional tests are limited in acute pancreatitis (AP) stratification. We aimed to assess AP severity by integrating the informative clinical measurements with cell free DNA (cfDNA) methylation markers. Methods One hundred and seventy-five blood samples were collected from 61 AP patients at multiple time points, plus 24 samples from healthy individuals. Genome-wide cfDNA methylation profiles of all samples were characterized with reduced representative bisulfite sequencing. Clinical blood tests covering 93 biomarkers were performed on AP patients within 24 h. SAP predication models were built based on cfDNA methylation and conventional blood biomarkers separately and in combination. Results We identified 565 and 59 cfDNA methylation markers informative for acute pancreatitis and its severity. These markers were used to develop prediction models for AP and SAP with area under the receiver operating characteristic of 0.92 and 0.81, respectively. Twelve blood biomarkers were systematically screened for a predictor of SAP with a sensitivity of 87.5% for SAP, and a specificity of 100% in mild acute pancreatitis, significantly higher than existing blood tests. An expanded model integrating 12 conventional blood biomarkers with 59 cfDNA methylation markers further improved the SAP prediction sensitivity to 92.2%. Conclusions These findings have demonstrated that accurate prediction of SAP by the integration of conventional and novel blood molecular markers, paving the way for early and effective SAP intervention through a non-invasive rapid diagnostic test.