Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
13,964 result(s) for "Yang, Gang"
Sort by:
Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism
The current industrial ammonia synthesis relies on Haber–Bosch process that is initiated by the dissociative mechanism, in which the adsorbed N 2 dissociates directly, and thus is limited by Brønsted–Evans–Polanyi (BEP) relation. Here we propose a new strategy that an anchored Fe 3 cluster on the θ-Al 2 O 3 (010) surface as a heterogeneous catalyst for ammonia synthesis from first-principles theoretical study and microkinetic analysis. We have studied the whole catalytic mechanism for conversion of N 2 to NH 3 on Fe 3 /θ-Al 2 O 3 (010), and find that an associative mechanism, in which the adsorbed N 2 is first hydrogenated to NNH, dominates over the dissociative mechanism, which we attribute to the large spin polarization, low oxidation state of iron, and multi-step redox capability of Fe 3 cluster. The associative mechanism liberates the turnover frequency (TOF) for ammonia production from the limitation due to the BEP relation, and the calculated TOF on Fe 3 /θ-Al 2 O 3 (010) is comparable to Ru B5 site. The current industrial ammonia synthesis relies on the Haber-Bosch process that is limited by the Brønsted–Evans–Polanyi relation. Here, the authors propose a new strategy that an anchored Fe 3 on θ-Al 2 O 3 (010) surface serves as a heterogeneous single cluster catalyst for ammonia synthesis from first-principles calculations and microkinetic analysis.
Enantioselective photoinduced cyclodimerization of a prochiral anthracene derivative adsorbed on helical metal nanostructures
The generation of molecular chirality in the absence of any molecular chiral inductor is challenging and of fundamental interest for developing a better understanding of homochirality. Here, we show the manipulation of molecular chirality through control of the handedness of helical metal nanostructures (referred to as nanohelices) that are produced by glancing angle deposition onto a substrate that rotates in either a clockwise or counterclockwise direction. A prochiral molecule, 2-anthracenecarboxylic acid, is stereoselectively adsorbed on the metal nanohelices as enantiomorphous anti-head-to-head dimers. The dimers show either Si–Si or Re–Re facial stacking depending on the handedness of the nanohelices, which results in a specific enantiopreference during their photoinduced cyclodimerization: a left-handed nanohelix leads to the formation of (+)-cyclodimers, whereas a right-handed one gives (–)-cyclodimers. Density functional theory calculations, in good agreement with the experimental results, point to the enantioselectivity mainly arising from the selective spatial matching of either Si–Si or Re–Re facial stacking at the helical surface; it may also be influenced by chiroplasmonic effects.The photoinduced dimerization of a prochiral anthracenecarboxylic acid occurs in an enantioselective fashion when the molecules are adsorbed on helical metal nanostructures. This enantiopreference arises mostly from the helicity of the silver and copper substrates—prepared using shear forces during the deposition process—and may also be influenced by chiroplasmonic effects.
Pseudo-adsorption and long-range redox coupling during oxygen reduction reaction on single atom electrocatalyst
Fundamental understanding of the dynamic behaviors at the electrochemical interface is crucial for electrocatalyst design and optimization. Here, we revisit the oxygen reduction reaction mechanism on a series of transition metal (M = Fe, Co, Ni, Cu) single atom sites embedded in N-doped nanocarbon by ab initio molecular dynamics simulations with explicit solvation. We have identified the dissociative pathways and the thereby emerged solvated hydroxide species for all the proton-coupled electron transfer (PCET) steps at the electrochemical interface. Such hydroxide species can be dynamically confined in a “pseudo-adsorption” state at a few water layers away from the active site and respond to the redox event at the catalytic center in a coupled manner within timescale less than 1 ps. In the PCET steps, the proton species (in form of hydronium in neutral/acidic media or water in alkaline medium) can protonate the pseudo-adsorbed hydroxide without needing to travel to the direct catalyst surface. This, therefore, expands the reactive region beyond the direct catalyst surface, boosting the reaction kinetics via alleviating mass transfer limits. Our work implies that in catalysis the reaction species may not necessarily bind to the catalyst surface but be confined in an active region. The reaction region is commonly considered to be the direct catalyst surface. Here, the authors challenge this view and use molecular dynamics simulations to reveal a solvated hydroxide species dynamically confined in a pseudo-adsorption state at a few water layers away from the active site during oxygen reduction reaction on single atom electrocatalyst.
Artificial-intelligence-driven discovery of catalyst genes with application to CO2 activation on semiconductor oxides
Catalytic-materials design requires predictive modeling of the interaction between catalyst and reactants. This is challenging due to the complexity and diversity of structure-property relationships across the chemical space. Here, we report a strategy for a rational design of catalytic materials using the artificial intelligence approach (AI) subgroup discovery. We identify catalyst genes (features) that correlate with mechanisms that trigger, facilitate, or hinder the activation of carbon dioxide (CO 2 ) towards a chemical conversion. The AI model is trained on first-principles data for a broad family of oxides. We demonstrate that surfaces of experimentally identified good catalysts consistently exhibit combinations of genes resulting in a strong elongation of a C-O bond. The same combinations of genes also minimize the OCO-angle, the previously proposed indicator of activation, albeit under the constraint that the Sabatier principle is satisfied. Based on these findings, we propose a set of new promising catalyst materials for CO 2  conversion. Here the authors demonstrate an artificial-intelligence based approach to identify catalytic materials features that correlate with mechanisms that trigger, facilitate, or hinder CO2 catalytic reactions.
Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction
Electrochemical reduction of CO 2 is a promising route for sustainable production of fuels. A grand challenge is developing low-cost and efficient electrocatalysts that can enable rapid conversion with high product selectivity. Here we design a series of nickel phthalocyanine molecules supported on carbon nanotubes as molecularly dispersed electrocatalysts (MDEs), achieving CO 2 reduction performances that are superior to aggregated molecular catalysts in terms of stability, activity and selectivity. The optimized MDE with methoxy group functionalization solves the stability issue of the original nickel phthalocyanine catalyst and catalyses the conversion of CO 2 to CO with >99.5% selectivity at high current densities of up to −300 mA cm −2 in a gas diffusion electrode device with stable operation at −150 mA cm −2 for 40 h. The well-defined active sites of MDEs also facilitate the in-depth mechanistic understandings from in situ/operando X-ray absorption spectroscopy and theoretical calculations on structural factors that affect electrocatalytic performance. Widespread deployment of electrochemical CO 2 reduction requires low-cost catalysts that perform well at high current densities. Zhang et al. show that methoxy-functionalized nickel phthalocyanine molecules on carbon nanotubes can operate as high-performing molecularly dispersed electrocatalysts at current densities of up to −300 mA cm –2 .
Semicommutative and Armendariz Matrix Rings
In this paper, we construct some interesting high-order upper triangular matrix rings, which have semicommutative and Armendariz properties. Also, the relatively maximality of these rings as subrings of certain matrix rings is considered.
Realistic Modeling of the Electrocatalytic Process at Complex Solid‐Liquid Interface
The rational design of electrocatalysis has emerged as one of the most thriving means for mitigating energy and environmental crises. The key to this effort is the understanding of the complex electrochemical interface, wherein the electrode potential as well as various internal factors such as H‐bond network, adsorbate coverage, and dynamic behavior of the interface collectively contribute to the electrocatalytic activity and selectivity. In this context, the authors have reviewed recent theoretical advances, and especially, the contributions to modeling the realistic electrocatalytic processes at complex electrochemical interfaces,  and illustrated the challenges and fundamental problems in this field. Specifically, the significance of the inclusion of explicit solvation and electrode potential as well as the strategies toward the design of highly efficient electrocatalysts are discussed. The structure‐activity relationships and their dynamic responses to the environment and catalytic functionality under working conditions are illustrated to be crucial factors for understanding the complexed interface and the electrocatalytic activities. It is hoped that this review can help spark new research passion and ultimately bring a step closer to a realistic and systematic modeling method for electrocatalysis.
Diversity of immune checkpoints in cancer immunotherapy
Finding effective treatments for cancer remains a challenge. Recent studies have found that the mechanisms of tumor evasion are becoming increasingly diverse, including abnormal expression of immune checkpoint molecules on different immune cells, in particular T cells, natural killer cells, macrophages and others. In this review, we discuss the checkpoint molecules with enhanced expression on these lymphocytes and their consequences on immune effector functions. Dissecting the diverse roles of immune checkpoints in different immune cells is crucial for a full understanding of immunotherapy using checkpoint inhibitors.
Exploring electronic-level principles how size reduction enhances nanomaterial surface reactivity through experimental probing and mathematical modeling
Size reduction can generally enhance the surface reactivity of inorganic nanomaterials. The origin of this nano-effect has been ascribed to ultrasmall size, large specific surface area, or abundant defects, but the most intrinsic electronic-level principles are still not fully understood yet. By combining experimental explorations and mathematical modeling, herein we propose an electronic-level model to reveal the physicochemical nature of size-dependent nanomaterial surface reactivity. Experimentally, we reveal that competitive redistribution of surface atomic orbitals from extended energy band states into localized surface chemical bonds is the critical electronic process of surface chemical interactions, using H 2 O 2 -TiO 2 chemisorption as a model reaction. Theoretically, we define a concept, orbital potential ( G ), to describe the electronic feature determining the tendency of orbital redistribution, and deduce a mathematical model to reveal how size modulates surface reactivity. We expose the dual roles of size reduction in enhancing nanomaterial surface reactivity—inversely correlating to orbital potential and amplifying the effects of other structural factors on surface reactivity.
Breaking linear scaling relationships in oxygen evolution via dynamic structural regulation of active sites
The universal linear scaling relationships between the adsorption energies of reactive intermediates limit the performance of catalysts in multi-step catalytic reactions. Here, we show how these scaling relationships can be circumvented in electrochemical oxygen evolution reaction by dynamic structural regulation of active sites. We construct a model Ni-Fe 2 molecular catalyst via in situ electrochemical activation, which is able to deliver a notable intrinsic oxygen evolution reaction activity. Theoretical calculations and electrokinetic studies reveal that the dynamic evolution of Ni-adsorbate coordination driven by intramolecular proton transfer can effectively alter the electronic structure of the adjacent Fe active centre during the catalytic cycle. This dynamic dual-site cooperation simultaneously lowers the free energy change associated with O–H bond cleavage and O–O bond formation, thereby disrupting the inherent scaling relationship in oxygen evolution reaction. The present study not only advances the development of molecular water oxidation catalysts, but also provides an unconventional paradigm for breaking the linear scaling relationships in multi-intermediates involved catalysis. Circumventing linear scaling relationships in multi-step catalytic reactions is meaningful but challenging. Here, the authors report a method to break this scaling relationship in the oxygen evolution reaction through dynamic regulation of the active site in a Ni-Fe molecular complex catalyst.