Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2,627 result(s) for "Yang, Haitao"
Sort by:
Structural biology of SARS-CoV-2 and implications for therapeutic development
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an unprecedented global health crisis. However, therapeutic options for treatment are still very limited. The development of drugs that target vital proteins in the viral life cycle is a feasible approach for treating COVID-19. Belonging to the subfamily Orthocoronavirinae with the largest RNA genome, SARS-CoV-2 encodes a total of 29 proteins. These non-structural, structural and accessory proteins participate in entry into host cells, genome replication and transcription, and viral assembly and release. SARS-CoV-2 proteins can individually perform essential physiological roles, be components of the viral replication machinery or interact with numerous host cellular factors. In this Review, we delineate the structural features of SARS-CoV-2 from the whole viral particle to the individual viral proteins and discuss their functions as well as their potential as targets for therapeutic interventions.Elucidating the structure and function of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins is vital for understanding the molecular mechanisms of viral replication and COVID-19 pathogenesis, and could lead to the development of novel therapeutics. In this Review, Yang and Rao delineate the structural features of SARS-CoV-2 from the whole viral particle to the individual viral proteins and discuss their functions as well as their potential as targets for therapeutic interventions.
Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur
The antineoplastic drug carmofur is shown to inhibit the SARS-CoV-2 main protease (Mpro). Here, the X-ray crystal structure of Mpro in complex with carmofur reveals that the carbonyl reactive group of carmofur is covalently bound to catalytic Cys145, whereas its fatty acid tail occupies the hydrophobic S2 subsite. Carmofur inhibits viral replication in cells (EC50 = 24.30 μM) and is a promising lead compound to develop new antiviral treatment for COVID-19.A crystal structure of SARS-CoV-2 with inhibitor carmofur reveals the mechanism of action of this compound and opens the way to develop more potent drugs.
Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors
A new coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the aetiological agent responsible for the 2019–2020 viral pneumonia outbreak of coronavirus disease 2019 (COVID-19) 1 – 4 . Currently, there are no targeted therapeutic agents for the treatment of this disease, and effective treatment options remain very limited. Here we describe the results of a programme that aimed to rapidly discover lead compounds for clinical use, by combining structure-assisted drug design, virtual drug screening and high-throughput screening. This programme focused on identifying drug leads that target main protease (M pro ) of SARS-CoV-2: M pro is a key enzyme of coronaviruses and has a pivotal role in mediating viral replication and transcription, making it an attractive drug target for SARS-CoV-2 5 , 6 . We identified a mechanism-based inhibitor (N3) by computer-aided drug design, and then determined the crystal structure of M pro of SARS-CoV-2 in complex with this compound. Through a combination of structure-based virtual and high-throughput screening, we assayed more than 10,000 compounds—including approved drugs, drug candidates in clinical trials and other pharmacologically active compounds—as inhibitors of M pro . Six of these compounds inhibited M pro , showing half-maximal inhibitory concentration values that ranged from 0.67 to 21.4 μM. One of these compounds (ebselen) also exhibited promising antiviral activity in cell-based assays. Our results demonstrate the efficacy of our screening strategy, which can lead to the rapid discovery of drug leads with clinical potential in response to new infectious diseases for which no specific drugs or vaccines are available. A programme of structure-assisted drug design and high-throughput screening identifies six compounds that inhibit the main protease of SARS-CoV-2, demonstrating the ability of this strategy to isolate drug leads with clinical potential.
Spin-polarized oxygen evolution reaction under magnetic field
The oxygen evolution reaction (OER) is the bottleneck that limits the energy efficiency of water-splitting. The process involves four electrons’ transfer and the generation of triplet state O 2 from singlet state species (OH - or H 2 O). Recently, explicit spin selection was described as a possible way to promote OER in alkaline conditions, but the specific spin-polarized kinetics remains unclear. Here, we report that by using ferromagnetic ordered catalysts as the spin polarizer for spin selection under a constant magnetic field, the OER can be enhanced. However, it does not applicable to non-ferromagnetic catalysts. We found that the spin polarization occurs at the first electron transfer step in OER, where coherent spin exchange happens between the ferromagnetic catalyst and the adsorbed oxygen species with fast kinetics, under the principle of spin angular momentum conservation. In the next three electron transfer steps, as the adsorbed O species adopt fixed spin direction, the OER electrons need to follow the Hund rule and Pauling exclusion principle, thus to carry out spin polarization spontaneously and finally lead to the generation of triplet state O 2 . Here, we showcase spin-polarized kinetics of oxygen evolution reaction, which gives references in the understanding and design of spin-dependent catalysts. Here, authors demonstrate the ferromagnetic catalyst to facilitate spin polarization in water oxidation reaction. They find the ferromagnetic-exchange-like behaviour between the ferromagnetic catalyst and the adsorbed oxygen species.
Structural basis for replicase polyprotein cleavage and substrate specificity of main protease from SARS-CoV-2
The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a key enzyme, which extensively digests CoV replicase polyproteins essential for viral replication and transcription, making it an attractive target for antiviral drug development. However, the molecular mechanism of how Mpro of SARS-CoV-2 digests replicase polyproteins, releasing the nonstructural proteins (nsps), and its substrate specificity remain largely unknown. Here, we determine the high-resolution structures of SARS-CoV-2 Mpro in its resting state, precleavage state, and postcleavage state, constituting a full cycle of substrate cleavage. The structures show the delicate conformational changes that occur during polyprotein processing. Further, we solve the structures of the SARS-CoV-2 Mpro mutant (H41A) in complex with six native cleavage substrates from replicase polyproteins, and demonstrate that SARS-CoV-2 Mpro can recognize sequences as long as 10 residues but only have special selectivity for four subsites. These structural data provide a basis to develop potent new inhibitors against SARS-CoV-2.
Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2
Topological semimetals have recently attracted extensive research interests as host materials to condensed matter physics counterparts of Dirac and Weyl fermions originally proposed in high energy physics. Although Lorentz invariance is required in high energy physics, it is not necessarily obeyed in condensed matter physics, and thus Lorentz-violating type-II Weyl/Dirac fermions could be realized in topological semimetals. The recent realization of type-II Weyl fermions raises the question whether their spin-degenerate counterpart—type-II Dirac fermions—can be experimentally realized too. Here, we report the experimental evidence of type-II Dirac fermions in bulk stoichiometric PtTe 2 single crystal. Angle-resolved photoemission spectroscopy measurements and first-principles calculations reveal a pair of strongly tilted Dirac cones along the Γ-A direction, confirming PtTe 2 as a type-II Dirac semimetal. Our results provide opportunities for investigating novel quantum phenomena (e.g., anisotropic magneto-transport) and topological phase transition. Whether the spin-degenerate counterpart of Lorentz-violating Weyl fermions, the Dirac fermions, can be realized remains as an open question. Here, Yan et al. report experimental evidence of such type-II Dirac fermions in bulk PtTe 2 single crystal with a pair of strongly tilted Dirac cones.
Carbon storage through China’s planted forest expansion
China’s extensive planted forests play a crucial role in carbon storage, vital for climate change mitigation. However, the complex spatiotemporal dynamics of China’s planted forest area and its carbon storage remain uncaptured. Here we reveal such changes in China’s planted forests from 1990 to 2020 using satellite and field data. Results show a doubling of planted forest area, a trend that intensified post-2000. These changes lead to China’s planted forest carbon storage increasing from 675.6 ± 12.5 Tg C in 1990 to 1,873.1 ± 16.2 Tg C in 2020, with an average rate of ~ 40 Tg C yr −1 . The area expansion of planted forests contributed ~ 53% (637.2 ± 5.4 Tg C) of the total above increased carbon storage in planted forests compared with planted forest growth. This proactive policy-driven expansion of planted forests has catalyzed a swift increase in carbon storage, aligning with China’s Carbon Neutrality Target for 2060. The dynamics of planted forests in China over the past three decades have contributed ~1198tg of above-ground carbon storage.
Functionalization of Mesoporous Semiconductor Metal Oxides for Gas Sensing: Recent Advances and Emerging Challenges
With the emerging of the Internet of Things, chemiresistive gas sensors have been extensively applied in industrial production, food safety, medical diagnosis, and environment detection, etc. Considerable efforts have been devoted to improving the gas‐sensing performance through tailoring the structure, functions, defects and electrical conductivity of sensitive materials. Among the numerous sensitive materials, mesoporous semiconductor metal oxides possess unparalleled properties, including tunable pore size, high specific surface area, abundant metal–oxygen bonds, and rapid mass transfer/diffusion behavior (Knudsen diffusion), which have been regarded as the most potential sensitive materials. Herein, the synthesis strategies for mesoporous metal oxides are overviewed, the classical functionalization techniques of sensitive materials are also systemically summarized as a highlight, including construction of mesoporous structure, regulation of micro‐nano structure (i.e., heterojunctions), noble metal sensitization (e.g., Au, Pt, Ag, Pd) and heteroatomic doping (e.g., C, N, Si, S). In addition, the structure–function relationship of sensitive materials has been discussed at molecular‐atomic level, especially for the chemical sensitization effect, elucidating the interface adsorption/catalytic mechanism. Moreover, the challenges and perspectives are proposed, which will open a new door for the development of intelligent gas sensor in various applications. The intelligent information age has brought new development opportunities for gas sensors. Herein, a brand‐new perspective is proposed to design functional mesoporous metal oxides for sensing performance optimization. The structure–function relationship of sensitive materials is discussed in molecular‐atomic level, and the challenges and perspectives are proposed for the rationally design of advanced mesoporous semiconductor sensing materials for intelligent sensors.
Topographic design in wearable MXene sensors with in-sensor machine learning for full-body avatar reconstruction
Wearable strain sensors that detect joint/muscle strain changes become prevalent at human–machine interfaces for full-body motion monitoring. However, most wearable devices cannot offer customizable opportunities to match the sensor characteristics with specific deformation ranges of joints/muscles, resulting in suboptimal performance. Adequate wearable strain sensor design is highly required to achieve user-designated working windows without sacrificing high sensitivity, accompanied with real-time data processing. Herein, wearable Ti 3 C 2 T x MXene sensor modules are fabricated with in-sensor machine learning (ML) models, either functioning via wireless streaming or edge computing, for full-body motion classifications and avatar reconstruction. Through topographic design on piezoresistive nanolayers, the wearable strain sensor modules exhibited ultrahigh sensitivities within the working windows that meet all joint deformation ranges. By integrating the wearable sensors with a ML chip, an edge sensor module is fabricated, enabling in-sensor reconstruction of high-precision avatar animations that mimic continuous full-body motions with an average avatar determination error of 3.5 cm, without additional computing devices. Wearable sensors with edge computing are desired for human motion monitoring. Here, the authors demonstrate a topographic design for wearable MXene sensor modules with wireless streaming or in-sensor computing models for avatar reconstruction.
Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2
Observations of topological surface states provide strong evidence that MoTe 2 is a type-II Weyl semimetal, hosting Weyl fermions that have no counterpart in high-energy physics. Weyl semimetal is a new quantum state of matter 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 hosting the condensed matter physics counterpart of the relativistic Weyl fermions 13 originally introduced in high-energy physics. The Weyl semimetal phase realized in the TaAs class of materials features multiple Fermi arcs arising from topological surface states 10 , 11 , 14 , 15 , 16 and exhibits novel quantum phenomena, such as a chiral anomaly-induced negative magnetoresistance 17 , 18 , 19 and possibly emergent supersymmetry 20 . Recently it was proposed theoretically that a new type (type-II) of Weyl fermion 21 , 22 that arises due to the breaking of Lorentz invariance, which does not have a counterpart in high-energy physics, can emerge as topologically protected touching between electron and hole pockets. Here, we report direct experimental evidence of topological Fermi arcs in the predicted type-II Weyl semimetal MoTe 2 (refs  23 , 24 , 25 ). The topological surface states are confirmed by directly observing the surface states using bulk- and surface-sensitive angle-resolved photoemission spectroscopy, and the quasi-particle interference pattern between the putative topological Fermi arcs in scanning tunnelling microscopy. By establishing MoTe 2 as an experimental realization of a type-II Weyl semimetal, our work opens up opportunities for probing the physical properties of this exciting new state.