Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
42,685 result(s) for "Yang, Hong"
Sort by:
ثراء شينجيانغ
يعتبر ظهور الأدوات البرونزية قفزة مهمة في تاريخ الحضارة الإنسانية. وعلي الرغم من أن العصر البرونزي في الصين لم يكن الأول في تاريخ البشرية، ولكن الأدوات البرونزية في الصين القديمة قد احتلت مكانة فريدة في تاريخ الحضارة العالمية اعتمادا علي أنواعها المتنوعة وأنماطها الغنية وعملية السبك الدقيقة والدلالة التاريخية والثقافية العميقة التي يحملها كل عمل برونزي في الصين القديمة. وهذا الكتاب الذي بين يدي القارئ الكريم يعرفن بلغة واضحة وحية وبالشرح والصور على أحد اوجه الثقافة والفنون الصينية الشهيرة والتي هي ثقافة البرونز الرائعة في الصين القديمة ، فمن خلال قطعة من القطع البرونزية الثمينة يمكننا أن نستمع إلي صوت العصر البرونزي من أماكن بعيدة وتجربة أسلوب فريد من نوعه في ذلك العصر الذي مازالت أسراره بعيدة عن متناول القارئ العربي والتي نحاول من خلال هذا الكتاب أن نقدمها بشكل موجز وواضح لننقل للقارئ الكريم وجها جديدا عليه من أوجه الحضارة الصينية المتميزة.
New knowledge of the mechanisms of sorafenib resistance in liver cancer
Sorafenib is an oral multikinase inhibitor that suppresses tumor cell proliferation and angiogenesis and promotes tumor cell apoptosis It was approved by the FDA for the treatment of advanced renal cell carcinoma in 2006, and as a unique target drug for advanced hepatocellular carcinoma (HCC) in 2007. Sorafenib can significantly extend the median survival time of patients but only by 3-5 months. Moreover, it is associated with serious adverse side effects, and drug resistance often develops. Therefore, it is of great importance to explore the mechanisms underlying sorafenib resistance and to develop individualized therapeutic strategies for coping with these problems. Recent studies to the primary resistance, mechanisms are underying the acquired resistance to sorafenib, such as crosstalk involving PI3K/Akt and JAK-STAT pathways, the activation of hypoxia-inducible pathways, and epithelial-mesenchymal transition. Here, we briefly describe the function of sorafenib, its clinical application, and the molecular mechanisms for drug resistance, especially for HCC patients.
Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution
While inheriting the exceptional merits of single atom catalysts, diatomic site catalysts (DASCs) utilize two adjacent atomic metal species for their complementary functionalities and synergistic actions. Herein, a DASC consisting of nickel-iron hetero-diatomic pairs anchored on nitrogen-doped graphene is synthesized. It exhibits extraordinary electrocatalytic activities and stability for both CO 2 reduction reaction (CO 2 RR) and oxygen evolution reaction (OER). Furthermore, the rechargeable Zn-CO 2 battery equipped with such bifunctional catalyst shows high Faradaic efficiency and outstanding rechargeability. The in-depth experimental and theoretical analyses reveal the orbital coupling between the catalytic iron center and the adjacent nickel atom, which leads to alteration in orbital energy level, unique electronic states, higher oxidation state of iron, and weakened binding strength to the reaction intermediates, thus boosted CO 2 RR and OER performance. This work provides critical insights to rational design, working mechanism, and application of hetero-DASCs. Diatomic site catalysts utilize two adjacent atomic metal species for their complementary functionalities and synergistic actions. Here, the authors report the orbital coupling of hetero-diatomic nickel-iron site boosts CO 2 reduction reaction and oxygen evolution reaction.
Coordination engineering of iridium nanocluster bifunctional electrocatalyst for highly efficient and pH-universal overall water splitting
Water electrolysis offers a promising energy conversion and storage technology for mitigating the global energy and environmental crisis, but there still lack highly efficient and pH-universal electrocatalysts to boost the sluggish kinetics for both cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER). Herein, we report uniformly dispersed iridium nanoclusters embedded on nitrogen and sulfur co-doped graphene as an efficient and robust electrocatalyst for both HER and OER at all pH conditions, reaching a current density of 10 mA cm −2 with only 300, 190 and 220 mV overpotential for overall water splitting in neutral, acidic and alkaline electrolyte, respectively. Based on probing experiments, operando X-ray absorption spectroscopy and theoretical calculations, we attribute the high catalytic activities to the optimum bindings to hydrogen (for HER) and oxygenated intermediate species (for OER) derived from the tunable and favorable electronic state of the iridium sites coordinated with both nitrogen and sulfur. Water electrolysis offers a promising energy conversion technology, although there is still a need to understand the catalysis on the atomic-level. Here, the authors report Ir nanoclusters coordinated with both N and S as an efficient and pH-universal electrocatalyst for overall water splitting.
The Assembly of MXenes from 2D to 3D
Since their discovery in 2011, transition metal carbides or nitrides (MXenes) have attracted a wide range of attention due to their unique properties and promise for use in a variety of applications. However, the low accessible surface area and poor processability of MXene nanosheets caused by their restacking have severely hindered their practical use, and this is expected to be solved by integrating them into macroscopic assemblies. Here, recent progress in the construction of MXene assemblies from 2D to 3D at the macro and/or microlevel is summarized. The mechanisms of their assembly are also discussed to better understand the relationship between performance and assembled structure. The possible uses of MXene assemblies in energy conversion and storage, electromagnetic interference shielding and absorption, and other applications are summarized. The MXene assemblies are promising for broadening the applications of MXenes and promoting their realization in practice. Herein, the MXene assemblies from 2D to 3D at macro and/or microlevels are reviewed. The corresponding assembly mechanisms and applications are also summarized to better deepen the cognition of relationships between assembled structures and specific applications.
Using Probiotics as Supplementation for Helicobacter pylori Antibiotic Therapy
Helicobacter pylori is a well-known pathogen that is highly prevalent in the world population, and H. pylori infection is potentially hazardous to humans because of its relationship to various gastrointestinal diseases, such as gastric ulcers, chronic gastritis, and gastric carcinoma. Therefore, the clinical guidelines recommend taking antibiotic therapy to eradicate the pathogen, which usually leads to the desired therapeutic effect. However, some failure cases of this therapy indicate that the increasing antibiotic resistance and side effects may affect the therapeutic effect. Here we propose that using probiotics as supplementation for antibiotic therapy may provide an extra help. Recent studies have shown that probiotic supplementation therapy has promising application prospects; it can enhance the antibiotic effect to achieve a better therapeutic result and maintain the balance of the host gastrointestinal microbiota. In summary, under global conditions of increasing H. pylori prevalence, probiotic supplementation therapy is worthy of further studies for future clinical application.
From Micropores to Ultra-micropores inside Hard Carbon: Toward Enhanced Capacity in Room-/Low-Temperature Sodium-Ion Storage
HighlightsHard-carbon anode dominated with ultra-micropores (< 0.5 nm) was synthesized for sodium-ion batteries via a molten diffusion–carbonization method.The ultra-micropores dominated carbon anode displays an enhanced capacity, which originates from the extra sodium-ion storage sites of the designed ultra-micropores.The thick electrode (~ 19 mg cm−2) with a high areal capacity of 6.14 mAh cm−2 displays an ultrahigh cycling stability and an outstanding low-temperature performance. Pore structure of hard carbon has a fundamental influence on the electrochemical properties in sodium-ion batteries (SIBs). Ultra-micropores (< 0.5 nm) of hard carbon can function as ionic sieves to reduce the diffusion of slovated Na+ but allow the entrance of naked Na+ into the pores, which can reduce the interficial contact between the electrolyte and the inner pores without sacrificing the fast diffusion kinetics. Herein, a molten diffusion–carbonization method is proposed to transform the micropores (> 1 nm) inside carbon into ultra-micropores (< 0.5 nm). Consequently, the designed carbon anode displays an enhanced capacity of 346 mAh g−1 at 30 mA g−1 with a high ICE value of ~ 80.6% and most of the capacity (~ 90%) is below 1 V. Moreover, the high-loading electrode (~ 19 mg cm−2) exhibits a good temperature endurance with a high areal capacity of 6.14 mAh cm−2 at 25 °C and 5.32 mAh cm−2 at − 20 °C. Based on the in situ X-ray diffraction and ex situ solid-state nuclear magnetic resonance results, the designed ultra-micropores provide the extra Na+ storage sites, which mainly contributes to the enhanced capacity. This proposed strategy shows a good potential for the development of high-performance SIBs.
Consummating ion desolvation in hard carbon anodes for reversible sodium storage
Hard carbons are emerging as the most viable anodes to support the commercialization of sodium-ion (Na-ion) batteries due to their competitive performance. However, the hard carbon anode suffers from low initial Coulombic efficiency (ICE), and the ambiguous Na-ion (Na + ) storage mechanism and interfacial chemistry fail to give a reasonable interpretation. Here, we have identified the time-dependent ion pre-desolvation on the nanopore of hard carbons, which significantly affects the Na + storage efficiency by altering the solvation structure of electrolytes. Consummating the pre-desolvation by extending the aging time, generates a highly aggregated electrolyte configuration inside the nanopore, resulting in negligible reductive decomposition of electrolytes. When applying the above insights, the hard carbon anodes achieve a high average ICE of 98.21% in the absence of any Na supplementation techniques. Therefore, the negative-to-positive capacity ratio can be reduced to 1.02 for full cells, which enables an improved energy density. The insight into hard carbons and related interphases may be extended to other battery systems and support the continued development of battery technology. Hard carbon is regarded as a promising negative electrode for Na-ion batteries but suffers from low initial Coulombic efficiency (ICE). Here, the authors identify the time-dependent ion pre-desolvation on the nanopore of hard carbons, which remarkably improves the ICE by simply extending the aging time.
Non-KREEP origin for Chang’e-5 basalts in the Procellarum KREEP Terrane
Mare volcanics on the Moon are the key record of thermo-chemical evolution throughout most of lunar history 1 – 3 . Young mare basalts—mainly distributed in a region rich in potassium, rare-earth elements and phosphorus (KREEP) in Oceanus Procellarum, called the Procellarum KREEP Terrane (PKT) 4 —were thought to be formed from KREEP-rich sources at depth 5 – 7 . However, this hypothesis has not been tested with young basalts from the PKT. Here we present a petrological and geochemical study of the basalt clasts from the PKT returned by the Chang’e-5 mission 8 . These two-billion-year-old basalts are the youngest lunar samples reported so far 9 . Bulk rock compositions have moderate titanium and high iron contents  with KREEP-like rare-earth-element and high thorium concentrations. However, strontium–neodymium isotopes indicate that these basalts were derived from a non-KREEP mantle source. To produce the high abundances of rare-earth elements and thorium, low-degree partial melting and extensive fractional crystallization are required. Our results indicate that the KREEP association may not be a prerequisite for young mare volcanism. Absolving the need to invoke heat-producing elements in their source implies a more sustained cooling history of the lunar interior to generate the Moon’s youngest melts. Isotopic analysis of basalt clasts returned from the Moon by the Chang’e-5 mission indicates that the rocks were derived from a mantle source that lacked potassium, rare-earth elements and phosphorus.
Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery
Sodium metal batteries have potentially high energy densities, but severe sodium-dendrite growth and side reactions prevent their practical applications, especially at high temperatures. Herein, we design an inorganic ionic conductor/gel polymer electrolyte composite, where uniformly cross-linked beta alumina nanowires are compactly coated by a poly(vinylidene fluoride-co-hexafluoropropylene)-based gel polymer electrolyte through their strong molecular interactions. These  beta alumina nanowires combined with the gel polymer layer create dense and homogeneous solid-liquid hybrid sodium-ion transportation channels through and along the nanowires, which promote uniform sodium deposition and formation of a stable and flat solid electrolyte interface on the sodium metal anode. Side reactions between the sodium metal and liquid electrolyte, as well as sodium dendrite formation, are successfully suppressed, especially at 60 °C. The sodium vanadium phosphate/sodium full cells with composite electrolyte exhibit 95.3% and 78.8% capacity retention after 1000 cycles at 1 C at 25 °C and 60 °C, respectively. Here the authors show a beta alumina nanowires/gel polymer composite electrolyte design. The dense and homogeneous solid-liquid hybrid sodium-ion transportation channels promote uniform sodium deposition and stripping and significantly improve the performance of a Na metal battery.