Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
51 result(s) for "Yang, Rujing"
Sort by:
Burden of neurological diseases in Asia, from 1990 to 2021 and its predicted level to 2045: a Global Burden of Disease study
Introduction Neurological diseases are a significant contributor to premature mortality and temporary or long-term disability among survivors. Asia serves as an essential region for assessing the shifting burden of these disorders. This study aims to calculate and evaluate the changes in burden of neurological diseases across Asia. Methods The Global Burden of Disease database provided data on deaths, disability-adjusted life-years (DALYs), incidence, and prevalence from 1990 to 2021 across Asian subregions and countries. Twelve common neurological diseases were analyzed. Estimated Annual Percent Change were calculated to reveal trends in all the metrics. The Nordpred age-period-cohort model was employed to project the neurological disease burden. Results In 2021, the leading neurological disorders in DALYs were stroke (109,144.87, 95% uncertainty intervals (UI) 95,992.89–123,089.90), headache disorders (25,713.91, 95%UI 4,693.65–54,853.47), and Alzheimer’s disease and other dementias (19,156.46, 95% UI 9,137.72–41,421.18). Stroke and degenerative neurological disorder presented the most severe burden in East Asia, while headache disorders were prominent in South Asia. Between 1990 and 2021, Asia’s regions showed varying reductions in age-standardized DALYs and age-standardized death rates for neurological diseases, with the steepest decline observed in high-income Asia Pacific (DALYs -2.27, 95% confidence interval (CI) -2.4 to -2.13; ASDR -3.85, 95% CI -4.02 to -3.69). Neurological disease burden was higher in males, peaking at ages 65–74. Projections to 2045 indicate a decline in DALYs for stroke, infectious neurological diseases, Parkinson’s disease, and idiopathic epilepsy across most regions of Asia. In contrast, trends for other neurological diseases will vary regionally. Conclusion Neurological diseases were the primary cause of DALYs in 2021, ranking second only to cardiovascular diseases as a leading cause of death. As the aging trend in Asia’s population continues to intensify, it is crucial to focus more on the prevention and management of neurological disorders.
Large shifts of niche and range in the golden apple snail (Pomacea canaliculata), an aquatic invasive species
Niche and range shifts of invasive species are essential in assessing the risk of biological invasions and developing ecological niches and species distribution theories. Studies on invasive aquatic species' niche and range shifts have important implications for conserving aquatic invasive ecosystems. Here we used niche and range dynamic models to explore niche and range shifts of the golden apple snail Pomacea canaliculata, one of the world's most invasive aquatic species. The major factors responsible for P. canaliculata niche shifts in native and invaded regions were minimum temperature of the coldest month and precipitation in the warmest quarter. The niche and range of invasive P. canaliculata snails were not conserved relative to their native counterparts and had a broader niche and larger range, which are consistent with the findings that invasive P. canaliculata snails could survive in colder, hotter, drier, and wetter climates. Given that niche nonconservatism could result in range nonconservatism and small increases in niche breadth could induce large range expansions, niche shifts might provide a more sensitive indicator of invasion risk than range shifts. In contrast to most invasive species that show conservatism of their native niches, we observed high niche lability between the P. canaliculata snails in the native and invaded regions. Our findings indicate that the golden apple snail is a high‐risk invasive aquatic species for its ability to aggressively proliferate through its rapid reproduction rate, fast growth as suggested by previous studies, and also for its highly labile niches and ranges, which facilitates adaptation to the climate of the introduced regions.
Niche and Range Shifts of the Fall Webworm (Hyphantria cunea Dury) in Europe Imply Its Huge Invasion Potential in the Future
The fall webworm (Hyphantria cunea Dury) has a strong impact on agricultural systems in Europe. However, its invasive potential, which was inherited from its native niche in North America, remains unknown. Here, we investigated the climatic niche and range shifts of the fall webworm in Europe and compared them with those in native North America, then assessed the worms’ invasive potential in Europe. Compared with the fall webworm in Europe, those in North America survived in more diverse climatic conditions, which was closely associated with their broader niche and larger potential ranges in Europe. If the fall webworm in Europe could exploit the native niche inherited from those in North America to adapt to climatic conditions in Europe, their potential ranges in Europe could be 5.5-fold those based on the niche as introduced in Europe. The potentially unfilled ranges of the fall webworm in Europe were mainly detected in vast regions of Europe, excluding Norway, Sweden, Finland, North Russia, Hungary, Croatia, Romania, and Ukraine, suggesting that, without strict control, these vast regions might be preferably invaded by the fall webworm in Europe in the future. Therefore, strict control against its invasion is needed. Given that small niche shifts in this invasive insect could result in large range shifts, the niche shifts represent a more sensitive indicator of invasion risk than range shifts.
Cultivation has selected for a wider niche and large range shifts in maize
Maize ( L.) is a staple crop cultivated on a global scale. However, its ability to feed the rapidly growing human population may be impaired by climate change, especially if it has low climatic niche and range lability. One important question requiring clarification is therefore whether maize shows high niche and range lability. We used the COUE scheme (a unified terminology representing niche centroid shift, overlap, unfilling and expansion) and species distribution models to study the niche and range changes between maize and its wild progenitors using occurrence records of maize, lowland teosinte ( ssp. ) and highland teosinte ( ssp. ), respectively, as well as explore the mechanisms underlying the niche and range changes. In contrast to maize in Mexico, maize did not conserve its niche inherited from lowland and highland teosinte at the global scale. The niche breadth of maize at the global scale was wider than that of its wild progenitors (ca. 5.21 and 3.53 times wider compared with lowland and highland teosinte, respectively). Compared with its wild progenitors, maize at global scale can survive in regions with colder, wetter climatic conditions, as well as with wider ranges of climatic variables (ca. 4.51 and 2.40 times wider compared with lowland and highland teosinte, respectively). The niche changes of maize were largely driven by human introduction and cultivation, which have exposed maize to climatic conditions different from those experienced by its wild progenitors. Small changes in niche breadth had large effects on the magnitude of range shifts; changes in niche breadth thus merit increased attention. Our results demonstrate that maize shows wide climatic niche and range lability, and this substantially expanded its realized niche and potential range. Our findings also suggest that niche and range shifts probably triggered by natural and artificial selection in cultivation may enable maize to become a global staple crop to feed the growing population and adapting to changing climatic conditions. Future analyses are needed to determine the limits of the novel conditions that maize can tolerate, especially relative to projected climate change.
Global cultivation of wheat crops induces considerable shifts in the range and niche of species relative to their wild progenitors
Species’ range and niche play key roles in understanding ecological and biogeographical patterns, especially in projecting global biotic homogenization and potential distribution patterns of species under global change scenarios. However, few studies have investigated the ability of crop cultivation to influence potential range sizes and niche shifts of species. Wheat and its wild progenitors share the same origin and evolutionary history, and thus provide an excellent system to explore this topic. Using ensembled ecological niche models and niche dynamic models, we studied the potential range sizes of wheat and its wild progenitors, as well as their niche dynamics. Our results showed that wheat had larger range size and niche breadth than its wild progenitors, suggesting that wheat cultivation is a more powerful driver of range and niche expansion than natural niche evolution. Additionally, wheat and its wild progenitors occupied different niche positions, and the former did not conserve the niches inherited from the latter, implying that wheat cultivation considerably induces niche shifts. The niche dynamics between wheat and its wild progenitors were not only closely associated with cultivation but were also modified by the niche conservatism of its wild progenitors. In contrast to most invasive plants, wheat, as a global staple crop species, did not conserve the niche space inherited from its wild progenitors, suggesting that compared with most plant invasions, cultivation may have a stronger effect on niche shifts. Therefore, global niche shifts induced by crop cultivation need much more attention, though the underlying mechanisms require further study.
The Relationship between Human Embryo Parameters and De Novo Chromosomal Abnormalities in Preimplantation Genetic Testing Cycles
Research Question. What is the incidence of de novo chromosome abnormalities (>4 Mb), and are they related to embryo parameters in preimplantation genetic testing for chromosome structural rearrangement (PGT-SR) cycles and preimplantation genetic testing for aneuploidy (PGT-A) cycles? Design. In total, 456 PGT cycles, including 283 PGT-SR cycles and 173 PGT-A cycles, were assessed through comprehensive chromosome screening (CCS) from January 2017 to June 2020 at the Department of Reproductive Medicine of the Third Affiliated Hospital of Zhengzhou University. Trophectoderm (TE) biopsies were sequenced using next-generation sequencing (NGS). The incidence of de novo chromosome abnormalities was calculated, and the relationships between de novo chromosome abnormality rates and maternal age, number of oocytes retrieved, and parameters of cleavage-stage embryos and blastocyst-stage embryos were investigated. Results. The incidence of de novo chromosome abnormalities was 28.0% (318/1,135) in the PGT-SR cycles and 36.3% (214/590) in the PGT-A cycles, which increased with maternal age in both PGT-SR cycles (P = 0.018) and PGT-A cycles (P < 0.001). The incidence of de novo chromosome abnormalities was related to TE grade (P < 0.001), internal cell mass grade (P = 0.002), and development speed (day 5 vs. day 7: P < 0.001) of blastocyst-stage embryos. The incidence of de novo chromosomal abnormalities was irrelevant to the number of oocytes retrieved and the parameters of the embryo at the cleavage stage. Conclusion. Blastocysts with higher morphology scores and faster progression had a lower incidence of de novo chromosome abnormalities, especially complex chromosome abnormalities. De novo chromosome abnormalities may negatively affect the morphological grading of blastocysts. Our findings will provide valuable information to the fertility doctor for embryo selection in non-PGT cycles.
Clones of Ectopic Stem Cells in the Regeneration of Muscle Defects In Vivo
Little is known about whether clones of ectopic, non-muscle stem cells contribute to muscle regeneration. Stem/progenitor cells that are isolated for experimental research or therapeutics are typically heterogeneous. Non-myogenic lineages in a heterogeneous population conceptually may compromise tissue repair. In this study, we discovered that clones of mononucleated stem cells of human tooth pulp fused into multinucleated myotubes that robustly expressed myosin heavy chain in vitro with or without co-culture with mouse skeletal myoblasts (C2C12 cells). Cloned cells were sustainably Oct4+, Nanog+ and Stro1+. The fusion indices of myogenic clones were approximately 16-17 folds greater than their parent, heterogeneous stem cells. Upon infusion into cardio-toxin induced tibialis anterior muscle defects, undifferentiated clonal progenies not only engrafted and colonized host muscle, but also expressed human dystrophin and myosin heavy chain more efficaciously than their parent heterogeneous stem cell populations. Strikingly, clonal progenies yielded ∼9 times more human myosin heavy chain mRNA in regenerating muscles than those infused with their parent, heterogeneous stem cells. The number of human dystrophin positive cells in regenerating muscles infused with clonal progenies was more than ∼3 times greater than muscles infused with heterogeneous stem cells from which clonal progenies were derived. These findings suggest the therapeutic potential of ectopic myogenic clones in muscle regeneration.
Future Range Dynamics Suggest Increasing Threats of Grey Squirrels (Sciurus carolinensis) against Red Squirrels (Sciurus vulgaris) in Europe: A Perspective on Climatic Suitability
Interactions between the introduced gray squirrel (Sciurus carolinensis) and the native red squirrel (S. vulgaris) play an important role in the ecological equilibrium of European forest ecosystems. However, the range dynamics of the grey squirrel and red squirrel under future climate change scenarios remain unknown. The present study examined the range dynamics of grey squirrels and red squirrels in Europe and their range overlap now and in the future based on climate change. Under the most optimistic climate change scenario (SSP126), expansion of the grey squirrel’s range was mainly predicted in Germany, France, Croatia, Serbia, and Bulgaria. Under the most pessimistic climate change scenario (SSP585), expansion of the grey squirrel’s range was predicted in vast and scattered regions. Additionally, France, Italy, and Germany were overlapping ranges for the grey squirrel and red squirrel in the future under the SSP126 scenario but not under the current conditions, suggesting that there will be new regions where grey squirrels may threaten red squirrels in the future under SSP126. The range overlaps under the SSP585 scenario but not under the current conditions were vast and scattered, suggesting that there will be new regions in the future where grey squirrel may displace red squirrels under SSP585. Despite considerable variation, we detected expansions in the grey squirrel and red squirrel ranges and an increase in overlapping ranges between grey squirrels and red squirrels in the future. Therefore, our prediction suggests increasing threats of grey squirrels toward red squirrels in Europe in the future under climate change, which may impact the ecological equilibrium of European forest ecosystems.
Future Range Dynamics Suggest Increasing Threats of Grey Squirrels in Europe: A Perspective on Climatic Suitability
Interactions between the introduced gray squirrel (Sciurus carolinensis) and the native red squirrel (S. vulgaris) play an important role in the ecological equilibrium of European forest ecosystems. However, the range dynamics of the grey squirrel and red squirrel under future climate change scenarios remain unknown. The present study examined the range dynamics of grey squirrels and red squirrels in Europe and their range overlap now and in the future based on climate change. Under the most optimistic climate change scenario (SSP126), expansion of the grey squirrel’s range was mainly predicted in Germany, France, Croatia, Serbia, and Bulgaria. Under the most pessimistic climate change scenario (SSP585), expansion of the grey squirrel’s range was predicted in vast and scattered regions. Additionally, France, Italy, and Germany were overlapping ranges for the grey squirrel and red squirrel in the future under the SSP126 scenario but not under the current conditions, suggesting that there will be new regions where grey squirrels may threaten red squirrels in the future under SSP126. The range overlaps under the SSP585 scenario but not under the current conditions were vast and scattered, suggesting that there will be new regions in the future where grey squirrel may displace red squirrels under SSP585. Despite considerable variation, we detected expansions in the grey squirrel and red squirrel ranges and an increase in overlapping ranges between grey squirrels and red squirrels in the future. Therefore, our prediction suggests increasing threats of grey squirrels toward red squirrels in Europe in the future under climate change, which may impact the ecological equilibrium of European forest ecosystems.
Niche and range dynamics of Tasmanian blue gum (Eucalyptus globulus Labill.), a globally cultivated invasive tree
The ecological niche concept has provided insights into various areas in ecology and biogeography. Although there remains much controversy regarding whether species niches are conserved across space and time, many recent studies have suggested that invasive species conserve their climatic niche between native and introduced ranges; however, whether the climatic niche of cultivated invasive species, whose niches are strongly affected by human activities, are conserved between native and introduced ranges remains unclear. Additionally, the range dynamics of invasive species in their native and introduced regions have not been extensively studied. Here, we investigated the niche and range dynamics of Tasmanian blue gum (Eucalyptus globulus Labill.), a globally cultivated invasive tree, using ecological niche models and niche dynamic analyses. The most important factors affecting the niche changes between native and introduced Tasmanian blue gum were max temperature of the warmest month and precipitation of the wettest month. The climate niche was not conserved between introduced and native range Tasmanian blue gum; moreover, the niche area of the former was ca. 7.4 times larger than that of the latter, as introduced Tasmanian blue gum could survive in hotter, colder, wetter, and drier climates. In addition, the potential range of introduced Tasmanian blue gum was ca. 32 times larger than that of its native counterpart. Human introduction and cultivation may play a key role in the niche and range expansion of introduced Tasmanian blue gum. Given that small increases in niche area can result in large range expansions, the niche expansion of an invasive species could be used to evaluate invasion risk, which might even be more sensitive than range expansions. The climate niche was conserved between introduced and native Tasmanian blue gum, though the niche breadth of the former was ca. 1.96 times wider than that of the latter. Small increases in niche breadth can result in large range expansions of Tasmanian blue gum.The niche expansion of an invasive species could be used to evaluate invasion risk, which might even be more sensitive than range expansion.