Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
873 result(s) for "Yang, Xiaonan"
Sort by:
A Physical Fatigue Evaluation Method for Automotive Manual Assembly: An Experiment of Cerebral Oxygenation with ARE Platform
Due to the complexity of the automobile manufacturing process, some flexible and delicate assembly work relies on manual operations. However, high-frequency and high-load repetitive operations make assembly workers prone to physical fatigue. This study proposes a method for evaluating human physical fatigue for the manual assembly of automobiles with methods: NIOSH (National Institute for Occupational Safety and Health), OWAS (Ovako Working Posture Analysis System) and RULA (Rapid Upper Limb Assessment). The cerebral oxygenation signal is selected as an objective physiological index reflecting the human fatigue level to verify the proposed physical fatigue evaluation method. Taking auto seat assembly and automobile manual assembly as an example, 18 group experiments were carried out with the ARE platform (Augmented Reality-based Ergonomic Platform). Furthermore, predictions of metabolic energy expenditure were performed for experiments in Tecnomatix Jack. Finally, it is concluded that the proposed physical fatigue evaluation method can reflect the human physical fatigue level and is more accurate than the evaluation of metabolic energy consumption in Tecnomatix Jack because of the immersion that comes with the AR devices and the precision that comes with motion capture devices.
Spatial Visual Imagery (SVI)-Based Electroencephalograph Discrimination for Natural CAD Manipulation
With the increasing demand for natural interactions, people have realized that an intuitive Computer-Aided Design (CAD) interaction mode can reduce the complexity of CAD operation and improve the design experience. Although interaction modes like gaze and gesture are compatible with some complex CAD manipulations, they still require people to express their design intentions physically. The brain contains design intentions implicitly and controls the corresponding body parts that execute the task. Therefore, building an end-to-end channel between the brain and computer as an auxiliary mode for CAD manipulation will allow people to send design intentions mentally and make their interaction more intuitive. This work focuses on the 1-D translation scene and studies a spatial visual imagery (SVI) paradigm to provide theoretical support for building an electroencephalograph (EEG)-based brain–computer interface (BCI) for CAD manipulation. Based on the analysis of three spatial EEG features related to SVI (e.g., common spatial patterns, cross-correlation, and coherence), a multi-feature fusion-based discrimination model was built for SVI. The average accuracy of the intent discrimination of 10 subjects was 86%, and the highest accuracy was 93%. The method proposed was verified to be feasible for discriminating the intentions of CAD object translation with good classification performance. This work further proves the potential of BCI in natural CAD manipulation.
Ultrasensitive Wearable Pressure Sensors Based on Silver Nanowire-Coated Fabrics
Flexible pressure sensors have attracted increasing attention due to their potential applications in wearable human health monitoring and care systems. Herein, we present a facile approach for fabricating all-textile-based piezoresistive pressure sensor with integrated Ag nanowire-coated fabrics. It fully takes advantage of the synergistic effect of the fiber/yarn/fabric multi-level contacts, leading to the ultrahigh sensitivity of 3.24 × 105 kPa−1 at 0–10 kPa and 2.16 × 104 kPa−1 at 10–100 kPa, respectively. Furthermore, the device achieved a fast response/relaxation time (32/24 ms) and a high stability (> 1000 loading/unloading cycles). Thus, such all-textile pressure sensor with high performance is expected to be applicable in the fields of smart cloths, activity monitoring, and healthcare device.
Factors influencing HPV vaccination willingness among male college students in Jinan according to the health belief model
Human papillomavirus (HPV) infection is a significant global public health threat. HPV vaccination in males is crucial for reducing the risk of related cancers and partner infection. On the basis of the health belief model (HBM), this study delves into the factors influencing the willingness to receive HPV vaccination among male college students in Jinan. Using convenience sampling, a cross-sectional survey of 3,410 male students from six Jinan universities was conducted in December 2024. The structured questionnaires collected data on demographics, HPV knowledge, and health beliefs via SPSS 27.0 with univariate and binary logistic regression analyses. The results revealed that 88.5% of the participants were aware of HPV, with 77.7% willing to vaccinate. Univariate analysis revealed that lower grades, urban household registration, and adequate HPV knowledge were correlated with greater vaccination willingness, whereas average monthly consumption of ≥ 2,500 yuan was negatively correlated. Within the HBM, perceived susceptibility and self-efficacy positively predict vaccination willingness, whereas perceived severity and barriers have inhibitory effects. This study concludes that HPV vaccination intention among male university students in Jinan is influenced by sociodemographic factors, knowledge, and health beliefs. Higher willingness was linked to younger age and urban residence, while higher monthly expenditure correlated with lower intention. Adequate HPV knowledge significantly increased willingness, whereas lacking personal acquaintance with HPV-related disease was a barrier. Within the Health Belief Model, perceived benefits paradoxically associated with reduced intention, potentially due to “health illusion” among young adults.
Optical characteristics of the skin with dark circles using pump-probe imaging
Pump-probe imaging was first used for quantitative analysis of melanin in dark circles’ skin to improve the ability to diagnose and treat dark circles on human skin. This study aimed to compare the distribution characteristics in melanin of lower eyelid skin tissues and to determine whether pump-probe imaging has potential for the classification of dark circles in vivo. Specimens obtained from 15 patients undergoing blepharoplasty were examined using pump-probe imaging. Furthermore, adjacent slices were respectively treated with hematoxylin–eosin (HE) and ferrous sulfate (FeSO 4 ) staining for cross-references. Subsequently, the melanin content index (MCI) and mean fluorescence intensity (MFI) were quantitatively analyzed by the pump-probe imaging. The distribution of melanin granules in the pump-probe image and FeSO 4 staining was consistent. Meanwhile, the tissues of the skin with dark circles and normal skin demonstrated significant differences in MCI and MFI. These differences can be used to distinguish the skin with dark circles from the normal skin. Pump-probe imaging could be used for the analysis of the microstructure and spectral characteristics of melanin granules in skin with dark circles. Significant differences were noted between the pigmented type of dark circles and the other two groups (normal skin and the vascular type of dark circles), while no significant differences were found between normal skin and the vascular type of dark circles.
Powerful CRISPR-Based Biosensing Techniques and Their Integration With Microfluidic Platforms
In the fight against the worldwide pandemic coronavirus disease 2019 (COVID-19), simple, rapid, and sensitive tools for nucleic acid detection are in urgent need. PCR has been a classic method for nucleic acid detection with high sensitivity and specificity. However, this method still has essential limitations due to the dependence on thermal cycling, which requires costly equipment, professional technicians, and long turnover times. Currently, clustered regularly interspaced short palindromic repeats (CRISPR)-based biosensors have been developed as powerful tools for nucleic acid detection. Moreover, the CRISPR method can be performed at physiological temperature, meaning that it is easy to assemble into point-of-care devices. Microfluidic chips hold promises to integrate sample processing and analysis on a chip, reducing the consumption of sample and reagent and increasing the detection throughput. This review provides an overview of recent advances in the development of CRISPR-based biosensing techniques and their perfect combination with microfluidic platforms. New opportunities and challenges for the improvement of specificity and efficiency signal amplification are outlined. Furthermore, their various applications in healthcare, animal husbandry, agriculture, and forestry are discussed.
Trade-Off and Synergy among Ecosystem Services in the Guanzhong-Tianshui Economic Region of China
Natural ecosystems provide society with important goods and services. With rapidly increasing populations and excessive utilization of natural resources, humans have been enhancing the production of some services at the expense of others. Although the need for certain trade-offs between conservation and development is urgent, having only a small number of efficient methods to assess such trade-offs has impeded progress. This study focuses on the evaluation of ecosystem services under different land use schemes. It reveals the spatial and temporal distributions of and changes in ecosystem services. Based on a correlation rate model and distribution mapping, the trade-offs and synergies of these ecosystem services can be found. Here, we also describe a new simple approach to quantify the relationships of every trade-off and synergy. The results show that all ecosystem services possess trade-offs and synergies in the study area. The trend of improving carbon sequestration and water interception indicate that these key ecosystem services have the strongest synergy. And the decrease in regional agricultural production and other services, except water yield, may be considered as trade-offs. The synergy between water yield and agricultural production was the most significant, while the trade-off between water interception and carbon sequestration was the most apparent, according to our interaction quantification model. The results of this study have implications for planning and monitoring the future management of natural capital and ecosystem services, and can be integrated into land use decision-making.
Specific Marker Expression and Cell State of Schwann Cells during Culture In Vitro
Schwann cells (SCs) in animals exist in different developmental stages or wound repair phases, distinguished mainly by the expression of SC-specific markers. No study has yet determined SC state under in vitro culture conditions, and the specific markers expressed in SC are obscure as well. In this study, we harvested sciatic nerves from newborn mice and isolated SCs by an enzyme-digestion method, then we examined the expression profiles of ten markers (S100, p75NTR, Sox10, Sox2, GAP43, NCAM, Krox20, Oct6, MBP, and MPZ) at both the RNA and protein levels in in vitro mouse SCs and speculated their relation with in vivo SC stages. We assayed RNA and protein levels of SC specific markers by immunofluorescence, Western Blot, and real-time quantitative RT-PCR. The results show that the expression of most markers (S100, p75NTR, GAP43, NCAM, Krox20, Oct6, MBP and MPZ) was not detectable in all of early stage cultured SCs. The expression of transcription factors Sox10 and Sox2 was, however, detectable in all SCs. After 8 days, the positive expression rate of all markers except GAP43 and Oct6 was almost 100%.These results indicates Sox10 is a necessary marker for SC identification, while S100 is not reliable. SCs cultured in vitro express Sox2, P75NTR, NCAM, GAP43, Oct6, and MPZ, suggesting that they are similar to in vivo undifferentiated iSCs or dedifferentiated iSCs after nerve injury.
Structure of a new glycyrrhiza polysaccharide and its immunomodulatory activity
A component of licorice polysaccharide (GPS-1) was extracted from licorice, its primary structure was identified and characterized for the first time, and its immunomodulatory activity was studied. Crude licorice polysaccharide was isolated and purified by DEAE sepharose FF ion-exchange column chromatography and Chromdex 200 PG gel filtration column chromatography to obtain a purified Glycyrrhiza polysaccharide named GPS-1. NMR and methylation analysis revealed that GPS-1 is composed of homogalacturonan (HG)-type pectin with 4)-D-GalpA-(1 as the backbone. This study of GPS-1 also examined its significant role in regulating immune activity in vitro and in vivo . As a result, GPS-1 promoted the secretion of IFN-γ and IL-4 in mice and increased the proportion of CD3 + CD4 + and CD3 + CD8 + T lymphocytes in their spleens. Dendritic cells (DCs) treated with GPS-1 showed promotion of DC maturation, antigen presentation, and phagocytic capacity. The results suggest that GPS-1 is a potential immunomodulator that stimulates the immune system by regulating multiple signaling pathways. Combined with our characterization of the primary structure of GPS-1, the present investigation provides the basis for future study of the form-function relationship of polysaccharides.