Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5,509
result(s) for
"Yang, Yu C."
Sort by:
Combined inhibition of KRASG12C and mTORC1 kinase is synergistic in non-small cell lung cancer
by
Taniguchi, Hirokazu
,
Whaley, Adele
,
Yang, Yu C.
in
1-Phosphatidylinositol 3-kinase
,
13/106
,
13/2
2024
Current KRAS
G12C
(OFF) inhibitors that target inactive GDP-bound KRAS
G12C
cause responses in less than half of patients and these responses are not durable. A class of RAS
G12C
(ON) inhibitors that targets active GTP-bound KRAS
G12C
blocks ERK signaling more potently than the inactive-state inhibitors. Sensitivity to either class of agents is strongly correlated with inhibition of mTORC1 activity. We have previously shown that PI3K/mTOR and ERK-signaling pathways converge on key cellular processes and that inhibition of both pathways is required for inhibition of these processes and for significant antitumor activity. We find here that the combination of a KRAS
G12C
inhibitor with a selective mTORC1 kinase inhibitor causes synergistic inhibition of Cyclin D1 expression and cap-dependent translation. Moreover, BIM upregulation by KRAS
G12C
inhibition and inhibition of MCL-1 expression by the mTORC1 inhibitor are both required to induce significant cell death. In vivo, this combination causes deep, durable tumor regressions and is well tolerated. This study suggests that the ERK and PI3K/mTOR pathways each mitigate the effects of inhibition of the other and that combinatorial inhibition is a potential strategy for treating KRAS
G12C
-dependent lung cancer.
Despite the development of inhibitors targeting active GTP-bound (ON) KRAS(G12C) for the treatment of KRAS G12C-driven non-small cell lung cancer (NSCLC), resistance remains an issue. Here, the authors show that despite inhibition of KRAS G12C ON, there is residual mTOR activity driving resistance, which was successfully targeted by combining with a selective mTOR inhibitor.
Journal Article
Molecular profiling stratifies diverse phenotypes of treatment-refractory metastatic castration-resistant prostate cancer
by
True, Lawrence D.
,
Nguyen, Holly M.
,
Kollath, Lori
in
Abiraterone
,
Analysis
,
Androgen receptors
2019
Metastatic castration-resistant prostate cancer (mCRPC) is a heterogeneous disease with diverse drivers of disease progression and mechanisms of therapeutic resistance. We conducted deep phenotypic characterization of CRPC metastases and patient-derived xenograft (PDX) lines using whole genome RNA sequencing, gene set enrichment analysis and immunohistochemistry. Our analyses revealed five mCRPC phenotypes based on the expression of well-characterized androgen receptor (AR) or neuroendocrine (NE) genes: (i) AR-high tumors (ARPC), (ii) AR-low tumors (ARLPC), (iii) amphicrine tumors composed of cells co-expressing AR and NE genes (AMPC), (iv) double-negative tumors (i.e. AR-/NE-; DNPC) and (v) tumors with small cell or NE gene expression without AR activity (SCNPC). RE1-silencing transcription factor (REST) activity, which suppresses NE gene expression, was lost in AMPC and SCNPC PDX models. However, knockdown of REST in cell lines revealed that attenuated REST activity drives the AMPC phenotype but is not sufficient for SCNPC conversion. We also identified a subtype of DNPC tumors with squamous differentiation and generated an encompassing 26-gene transcriptional signature that distinguished the five mCRPC phenotypes. Together, our data highlight the central role of AR and REST in classifying treatment-resistant mCRPC phenotypes. These molecular classifications could potentially guide future therapeutic studies and clinical trial design.
Journal Article
Tumour-selective activity of RAS-GTP inhibition in pancreatic cancer
2024
Broad-spectrum RAS inhibition has the potential to benefit roughly a quarter of human patients with cancer whose tumours are driven by RAS mutations
1
,
2
. RMC-7977 is a highly selective inhibitor of the active GTP-bound forms of KRAS, HRAS and NRAS, with affinity for both mutant and wild-type variants
3
. More than 90% of cases of human pancreatic ductal adenocarcinoma (PDAC) are driven by activating mutations in KRAS
4
. Here we assessed the therapeutic potential of RMC-7977 in a comprehensive range of PDAC models. We observed broad and pronounced anti-tumour activity across models following direct RAS inhibition at exposures that were well-tolerated in vivo. Pharmacological analyses revealed divergent responses to RMC-7977 in tumour versus normal tissues. Treated tumours exhibited waves of apoptosis along with sustained proliferative arrest, whereas normal tissues underwent only transient decreases in proliferation, with no evidence of apoptosis. In the autochthonous KPC mouse model, RMC-7977 treatment resulted in a profound extension of survival followed by on-treatment relapse. Analysis of relapsed tumours identified
Myc
copy number gain as a prevalent candidate resistance mechanism, which could be overcome by combinatorial TEAD inhibition in vitro. Together, these data establish a strong preclinical rationale for the use of broad-spectrum RAS-GTP inhibition in the setting of PDAC and identify a promising candidate combination therapeutic regimen to overcome monotherapy resistance.
RMC-7977, a multi-selective RAS(ON) inhibitor, exhibits potent tumour-selective activity in multiple pre-clinical models of pancreatic ductal adenocarcinoma through a combination of pharmacology and oncogene dependence.
Journal Article
A Multi-Parameter, High-Content, High-Throughput Screening Platform to Identify Natural Compounds that Modulate Insulin and Pdx1 Expression
2010
Diabetes is a devastating disease that is ultimately caused by the malfunction or loss of insulin-producing pancreatic beta-cells. Drugs capable of inducing the development of new beta-cells or improving the function or survival of existing beta-cells could conceivably cure this disease. We report a novel high-throughput screening platform that exploits multi-parameter high-content analysis to determine the effect of compounds on beta-cell survival, as well as the promoter activity of two key beta-cell genes, insulin and pdx1. Dispersed human pancreatic islets and MIN6 beta-cells were infected with a dual reporter lentivirus containing both eGFP driven by the insulin promoter and mRFP driven by the pdx1 promoter. B-score statistical transformation was used to correct systemic row and column biases. Using this approach and 5 replicate screens, we identified 7 extracts that reproducibly changed insulin and/or pdx1 promoter activity from a library of 1319 marine invertebrate extracts. The ability of compounds purified from these extracts to significantly modulate insulin mRNA levels was confirmed with real-time PCR. Insulin secretion was analyzed by RIA. Follow-up studies focused on two lead compounds, one that stimulates insulin gene expression and one that inhibits insulin gene expression. Thus, we demonstrate that multi-parameter, high-content screening can identify novel regulators of beta-cell gene expression, such as bivittoside D. This work represents an important step towards the development of drugs to increase insulin expression in diabetes and during in vitro differentiation of beta-cell replacements.
Journal Article
Tumor-selective effects of active RAS inhibition in pancreatic ductal adenocarcinoma
by
Chabot, John A
,
Der, Channing J
,
Curiel-Garcia, Alvaro
in
Adenocarcinoma
,
Animal models
,
Antitumor agents
2023
Broad-spectrum RAS inhibition holds the potential to benefit roughly a quarter of human cancer patients whose tumors are driven by RAS mutations. However, the impact of inhibiting RAS functions in normal tissues is not known. RMC-7977 is a highly selective inhibitor of the active (GTP-bound) forms of KRAS, HRAS, and NRAS, with affinity for both mutant and wild type (WT) variants. As >90% of human pancreatic ductal adenocarcinoma (PDAC) cases are driven by activating mutations in
, we assessed the therapeutic potential of RMC-7977 in a comprehensive range of PDAC models, including human and murine cell lines, human patient-derived organoids, human PDAC explants, subcutaneous and orthotopic cell-line or patient derived xenografts, syngeneic allografts, and genetically engineered mouse models. We observed broad and pronounced anti-tumor activity across these models following direct RAS inhibition at doses and concentrations that were well-tolerated
. Pharmacological analyses revealed divergent responses to RMC-7977 in tumor versus normal tissues. Treated tumors exhibited waves of apoptosis along with sustained proliferative arrest whereas normal tissues underwent only transient decreases in proliferation, with no evidence of apoptosis. Together, these data establish a strong preclinical rationale for the use of broad-spectrum RAS inhibition in the setting of PDAC.
Journal Article
Combined inhibition of KRAS G12C and mTORC1 kinase is synergistic in non-small cell lung cancer
by
Choi, Philip H
,
Taniguchi, Hirokazu
,
Whaley, Adele
in
Animals
,
Bcl-2-Like Protein 11 - genetics
,
Bcl-2-Like Protein 11 - metabolism
2024
Current KRAS
(OFF) inhibitors that target inactive GDP-bound KRAS
cause responses in less than half of patients and these responses are not durable. A class of RAS
(ON) inhibitors that targets active GTP-bound KRAS
blocks ERK signaling more potently than the inactive-state inhibitors. Sensitivity to either class of agents is strongly correlated with inhibition of mTORC1 activity. We have previously shown that PI3K/mTOR and ERK-signaling pathways converge on key cellular processes and that inhibition of both pathways is required for inhibition of these processes and for significant antitumor activity. We find here that the combination of a KRAS
inhibitor with a selective mTORC1 kinase inhibitor causes synergistic inhibition of Cyclin D1 expression and cap-dependent translation. Moreover, BIM upregulation by KRAS
inhibition and inhibition of MCL-1 expression by the mTORC1 inhibitor are both required to induce significant cell death. In vivo, this combination causes deep, durable tumor regressions and is well tolerated. This study suggests that the ERK and PI3K/mTOR pathways each mitigate the effects of inhibition of the other and that combinatorial inhibition is a potential strategy for treating KRAS
-dependent lung cancer.
Journal Article
Preparation, characterization and photocatalytic performance of Mo-doped ZnO photocatalysts
by
YU ChangLin YANG Kai SHU Qing YU Jimmy C CAO FangFang LI Xin ZHOU XiaoChun
in
Catalytic activity
,
Chemistry
,
Chemistry and Materials Science
2012
A series of Mo-doped ZnO photocatalysts with different Mo-dopant concentrations have been prepared by a grind- ing-calcination method. The structure of these photocatalysts was characterized by a variety of methods, including N2 physical adsorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, photoluminescence (PL) emission spectroscopy, and UV-vis diffuse reflectance spectroscopy (DRS). It was found that Mo6+ could enter into the crystal lattice of ZnO due to the radius of MO6+ (0.065 nm) being smaller than that of Zn2+ (0.083 nm). XRD results indicated that Mo6+ suppressed the growth of ZnO crystals. The FT-IR spectroscopy results showed that the ZnO with 2 wt.% Mo-doping has a higher level of surface hydroxyl groups than pure ZnO. PL spectroscopy indicated that ZnO with 2 wt.% Mo-doping also exhibited the largest reduction in the intensity of the emission peak at 390 nm caused by the recombi- nation of photogenerated hole-electron pairs. The activities of the Mo-doped ZnO photocatalysts were investigated in the pho- tocatalytic degradation of acid orange II under UV light (2 = 365 nm) irradiation. It was found that ZnO with 2 wt.% Mo-doping showed much higher photocatalytic activity and stability than pure ZnO. The high photocatalytic performance of the Mo-doped ZnO can be attributed to a great improvement in the surface properties of ZnO, higher crystallinity and lower recombination rate of photogenerated hole-electron (e-/h+) pairs. Moreover, the undoped Mo species may exist in the form of MoO3 and form MoO3/ZnO heterojunctions which further favors the separation of e/h+ pairs.
Journal Article
Acute exposure of methylglyoxal leads to activation of KATP channels expressed in HEK293 cells
by
Yang YANG Anuhya S KONDURU Ningren CUI Lei YU Timothy C TROWER Weiwei SHI Yun SHI Chun JIANG
in
Animals
,
Biomedical and Life Sciences
,
Biomedicine
2014
Aim: Highly reactive carbonyl methylglyoxal (MGO) is one of the metabolites excessively produced in diabetes. We have showed that prolonged exposure of vascular smooth muscle cells to MGO leads to instability of the mRNA encoding ATP-sensitive potassium (KATP) channel. In the present study we investigated the effects of MGO on the activity of KATP channels.
Methods: Kir6.1/ SUR2B, Kir6.2/SUR2B or Kir6.2Δ36 (a truncated Kir6.2 isoform) alone was expressed in HEK293 cells. Whole-cell currents were recorded in the cells with an Axopatch 200B amplifier. Macroscopic currents and single-channel currents were recorded in giant inside-out patches and normal inside-out patches, respectively. Data were analyzed using Clampfit 9 software.
Results: The basal activity of Kir6.1/SUR2B channels was low. The specific KATP channel opener pinacidil (10 μmol/L) could fully activate Kir6.1/SUR2B channels, which was inhibited by the specific KATP channel blocker glibenclamide (10 μmol/L). MGO (0.1–10 mmol/L) dose-dependently activated Kir6.1/SUR2B channels with an EC50 of 1.7 mmol/L. The activation of Kir6.1/SUR2B channels by MGO was reversible upon washout, and could be inhibited completely by glibenclamide. Similar results were observed when Kir6.2/SUR2B channels. Kir6.2Δ36 channels expressed in HEK293 cells could open automatically, and the channel activity was enhanced in the presence of MGO (3 mmol/L). Single channel recordings showed that MGO (3 mmol/L) markedly increased the open probability of Kir6.1/SUR2B channels, leaving the channel conductance unaltered.
Conclusion: Acute application of MGO activates KATP channels through direct, non-covalent and reversible interactions with the Kir6 subunits.
Journal Article
Active ingredients in Chinese medicines promoting blood circulation as Na+/K+-ATPase inhibitors
by
Ronald JY CHEN Tzyy-rong JINN Yi-ching CHEN Tse-yu CHUNG Wei-hung YANG Jason TC TZEN
in
Animals
,
Biomedical and Life Sciences
,
Biomedicine
2011
The positive inotropic effect of cardiac glycosides lies in their reversible inhibition on the membrane-bound Na+/K+-ATPase in human myocardium. Steroid-like compounds containing a core structure similar to cardiac glycosides are found in many Chinese medicines conventionally used for promoting blood circulation. Some of them are demonstrated to be Na+/K+-ATPase inhibitors and thus putatively responsible for their therapeutic effects via the same molecular mechanism as cardiac glycosides. On the other hand, magnesium lithospermate B of danshen is also proposed to exert its cardiac therapeutic effect by effectively inhibiting Na+/K+-ATPase. Theoretical modeling suggests that the number of hydrogen bonds and the strength of hydrophobic interaction between the effective ingredients of various medicines and residues around the binding pocket of Na+/K+-ATPase are crucial for the inhibitory potency of these active ingredients. Ginsenosides, the active ingredients in ginseng and sanqi, substantially inhibit Na+/K+-ATPase when sugar moieties are attached only to the C-3 position of their steroid-like structure, equivalent to the sugar position in cardiac glycosides. Their inhibitory potency is abolished, however, when sugar moieties are linked to C-6 or C-20 position of the steroid nucleus; presumably, these sugar attachments lead to steric hindrance for the entrance of ginsenosides into the binding pocket of Na+/K+-ATPase. Neuroprotective effects of cardiac glycosides, several steroid-like compounds, and magnesium lithospermate B against ischemic stroke have been accordingly observed in a cortical brain slice-based assay model, and cumulative data support that effective inhibitors of Na+/K+-ATPase in the brain could be potential drugs for the treatment of ischemic stroke.
Journal Article