Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
50 result(s) for "Yann Salmon"
Sort by:
Research frontiers for improving our understanding of drought-induced tree and forest mortality
Accumulating evidence highlights increased mortality risks for trees during severe drought, particularly under warmer temperatures and increasing vapour pressure deficit (VPD). Resulting forest die-off events have severe consequences for ecosystem services, biophysical and biogeochemical land–atmosphere processes. Despite advances in monitoring, modelling and experimental studies of the causes and consequences of tree death from individual tree to ecosystem and global scale, a general mechanistic understanding and realistic predictions of drought mortality under future climate conditions are still lacking. We update a global tree mortality map and present a roadmap to a more holistic understanding of forest mortality across scales. We highlight priority research frontiers that promote: (1) new avenues for research on key tree ecophysiological responses to drought; (2) scaling from the tree/plot level to the ecosystem and region; (3) improvements of mortality risk predictions based on both empirical and mechanistic insights; and (4) a global monitoring network of forest mortality. In light of recent and anticipated large forest die-off events such a research agenda is timely and needed to achieve scientific understanding for realistic predictions of drought-induced tree mortality. The implementation of a sustainable network will require support by stakeholders and political authorities at the international level.
Coordination of physiological traits involved in drought-induced mortality of woody plants
Accurate modelling of drought-induced mortality is challenging. A steady-state model is presented integrating xylem and phloem transport, leaf-level gas exchange and plant carbohydrate consumption during drought development. A Bayesian analysis of parameter uncertainty based on expert knowledge and a literature review is carried out. The model is tested by combining six data compilations covering 170 species using information on sensitivities of xylem conductivity, stomatal conductance and leaf turgor to water potential. The possible modes of plant failure at steady state are identified (i.e. carbon (C) starvation, hydraulic failure and phloem transport failure). Carbon starvation occurs primarily in the parameter space of isohydric stomatal control, whereas hydraulic failure is prevalent in the space of xylem susceptibility to embolism. Relative to C starvation, phloem transport failure occurs under conditions of low sensitivity of photosynthesis and high sensitivity of growth to plant water status. These three failure modes are possible extremes along two axes of physiological vulnerabilities, one characterized by the balance of water supply and demand and the other by the balance between carbohydrate sources and sinks. Because the expression of physiological vulnerabilities is coordinated, we argue that different failure modes should occur with roughly equal likelihood, consistent with predictions using optimality theory.
Effect of Leaf Water Potential on Internal Humidity and CO2 Dissolution: Reverse Transpiration and Improved Water Use Efficiency under Negative Pressure
The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but with much lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flat surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO2, thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Our results indicate that the reduction in vapor pressures of water and CO2 could enhance plant water use efficiency up to about 10% at a leaf water potential of −2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. The omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO2 concentration based on leaf gas exchange measurements. Manufactures of leaf gas exchange measurement systems should incorporate leaf water potentials in measurement set-ups.
Dynamic Surface Tension Enhances the Stability of Nanobubbles in Xylem Sap
Air seeded nanobubbles have recently been observed within tree sap under negative pressure. They are stabilized by an as yet unidentified process, although some embolize their vessels in extreme circumstances. Current literature suggests that a varying surface tension helps bubbles survive, but few direct measurements of this quantity have been made. Here, we present calculations of dynamic surface tension for two biologically relevant lipids using molecular dynamics simulations. We find that glycolipid monolayers resist expansion proportionally to the rate of expansion. Their surface tension increases with the tension applied, in a similar way to the viscosity of a non-Newtonian fluid. In contrast, a prototypical phospholipid was equally resistant to all applied tensions, suggesting that the fate of a given nanobubble is dependent on its surface composition. By incorporating our results into a Classical Nucleation Theory (CNT) framework, we predict nanobubble stability with respect to embolism. We find that the metastable radius of glycolipid coated nanobubbles is approximately 35 nm, and that embolism is in this case unlikely when the external pressure is less negative than –1.5 MPa.
A Novel Method to Simultaneously Measure Leaf Gas Exchange and Water Content
Understanding the relationship between plant water status and productivity and between plant water status and plant mortality is required to effectively quantify and predict the effects of drought on plants. Plant water status is closely linked to leaf water content that may be estimated using remote sensing technologies. Here, we used an inexpensive miniature hyperspectral spectrometer in the 1550–1950 nm wavelength domain to measure changes in silver birch (Betula pendula Roth) leaf water content combined with leaf gas exchange measurements at a sub-minute time resolution, under increasing vapor pressure deficit, CO2 concentrations, and light intensity within the measurement cuvette; we also developed a novel methodology for calibrating reflectance measurements to predict leaf water content for individual leaves. Based on reflectance at 1550 nm, linear regression modeling explained 98–99% of the variation in leaf water content, with a root mean square error of 0.31–0.43 g cm−2. The prediction accuracy of the model represents a c. ten-fold improvement compared to previous studies that have used destructive sampling measurements of several leaves. This novel methodology allows the study of interlinkages between leaf water content, transpiration, and assimilation at a high time resolution that will increase understanding of the movement of water within plants and between plants and the atmosphere.
Symbiont identity matters: carbon and phosphorus fluxes between Medicago truncatula and different arbuscular mycorrhizal fungi
Many studies have scrutinized the nutritional benefits of arbuscular mycorrhizal associations to their host plants, while the carbon (C) balance of the symbiosis has often been neglected. Here, we present quantification of both the C costs and the phosphorus (P) uptake benefits of mycorrhizal association between barrel medic (Medicago truncatula) and three arbuscular mycorrhizal fungal species, namely Glomus intraradices, Glomus claroideum, and Gigaspora margarita. Plant growth, P uptake and C allocation were assessed 7 weeks after sowing by comparing inoculated plants with their non-mycorrhizal counterparts, supplemented with different amounts of P. Isotope tracing (33P and 13C) was used to quantify both the mycorrhizal benefits and the costs, respectively. G. intraradices supported greatest plant P acquisition and incurred high C costs, which lead to similar plant growth benefits as inoculation with G. claroideum, which was less efficient in supporting plant P acquisition, but also required less C. G. margarita imposed large C requirement on the host plant and provided negligible P uptake benefits. However, it did not significantly reduce plant growth due to sink strength stimulation of plant photosynthesis. A simple experimental system such as the one established here should allow quantification of mycorrhizal costs and benefits routinely on a large number of experimental units. This is necessary for rapid progress in assessment of C fluxes between the plants and different mycorrhizal fungi or fungal communities, and for understanding the dynamics between mutualism and parasitism in mycorrhizal symbioses.
Osmolality and Non-Structural Carbohydrate Composition in the Secondary Phloem of Trees across a Latitudinal Gradient in Europe
Phloem osmolality and its components are involved in basic cell metabolism, cell growth, and in various physiological processes including the ability of living cells to withstand drought and frost. Osmolality and sugar composition responses to environmental stresses have been extensively studied for leaves, but less for the secondary phloem of plant stems and branches. Leaf osmotic concentration and the share of pinitol and raffinose among soluble sugars increase with increasing drought or cold stress, and osmotic concentration is adjusted with osmoregulation. We hypothesize that similar responses occur in the secondary phloem of branches. We collected living bark samples from branches of adult Pinus sylvestris, Picea abies, Betula pendula and Populus tremula trees across Europe, from boreal Northern Finland to Mediterranean Portugal. In all studied species, the observed variation in phloem osmolality was mainly driven by variation in phloem water content, while tissue solute content was rather constant across regions. Osmoregulation, in which osmolality is controlled by variable tissue solute content, was stronger for Betula and Populus in comparison to the evergreen conifers. Osmolality was lowest in mid-latitude region, and from there increased by 37% toward northern Europe and 38% toward southern Europe due to low phloem water content in these regions. The ratio of raffinose to all soluble sugars was negligible at mid-latitudes and increased toward north and south, reflecting its role in cold and drought tolerance. For pinitol, another sugar known for contributing to stress tolerance, no such latitudinal pattern was observed. The proportion of sucrose was remarkably low and that of hexoses (i.e., glucose and fructose) high at mid-latitudes. The ratio of starch to all non-structural carbohydrates increased toward the northern latitudes in agreement with the build-up of osmotically inactive C reservoir that can be converted into soluble sugars during winter acclimation in these cold regions. Present results for the secondary phloem of trees suggest that adjustment with tissue water content plays an important role in osmolality dynamics. Furthermore, trees acclimated to dry and cold climate showed high phloem osmolality and raffinose proportion.
Drivers of apoplastic freezing in gymnosperm and angiosperm branches
It is not well understood what determines the degree of supercooling of apoplastic sap in trees, although it determines the number and duration of annual freeze–thaw cycles in a given environment. We studied the linkage between apoplastic ice nucleation temperature, tree water status, and conduit size. We used branches of 10 gymnosperms and 16 angiosperms collected from an arboretum in Helsinki (Finland) in winter and spring. Branches with lower relative water content froze at lower temperatures, and branch water content was lower in winter than in spring. A bench drying experiment with Picea abies confirmed that decreasing branch water potential decreases apoplastic ice nucleation temperature. The studied angiosperms froze on average 2.0 and 1.8°C closer to zero Celsius than the studied gymnosperms during winter and spring, respectively. This was caused by higher relative water content in angiosperms; when branches were saturated with water, apoplastic ice nucleation temperature of gymnosperms increased to slightly higher temperature than that of angiosperms. Apoplastic ice nucleation temperature in sampled branches was positively correlated with xylem conduit diameter as shown before, but saturating the branches removed the correlation. Decrease in ice nucleation temperature decreased the duration of freezing, which could have an effect on winter embolism formation via the time available for gas escape during ice propagation. The apoplastic ice nucleation temperature varied not only between branches but also within a branch between consecutive freeze–thaw cycles demonstrating the stochastic nature of ice nucleation. Decrease in branch water content decreased apoplastic ice nucleation temperature in trees. Gymnosperms had lower branch water content than angiosperms in winter, and thus, they froze at lower temperatures in Boreal climate. Picture credits: Juho Aalto
Is Decreased Xylem Sap Surface Tension Associated With Embolism and Loss of Xylem Hydraulic Conductivity in Pathogen-Infected Norway Spruce Saplings?
Increased abiotic stress along with increasing temperatures, dry periods and forest disturbances may favor biotic stressors such as simultaneous invasion of bark beetle and ophiostomatoid fungi. It is not fully understood how tree desiccation is associated with colonization of sapwood by fungi. A decrease in xylem sap surface tension (σxylem) as a result of infection has been hypothesized to cause xylem embolism by lowering the threshold for air-seeding at the pits between conduits and disruptions in tree water transport. However, this hypothesis has not yet been tested. We investigated tree water relations by measuring the stem xylem hydraulic conductivity (Kstem), σxylem, stem relative water content (RWCstem), and water potential (Ψstem), and canopy conductance (gcanopy), as well as the compound composition in xylem sap in Norway spruce ( Picea abies ) saplings. We conducted our measurements at the later stage of Endoconidiophora polonica infection when visible symptoms had occurred in xylem. Saplings of two clones (44 trees altogether) were allocated to treatments of inoculated, wounded control and intact control trees in a greenhouse. The saplings were destructively sampled every second week during summer 2016. σxylem, Kstem and RWCstem decreased following the inoculation, which may indicate that decreased σxylem resulted in increased embolism. gcanopy did not differ between treatments indicating that stomata responded to Ψstem rather than to embolism formation. Concentrations of quinic acid, myo-inositol, sucrose and alkylphenol increased in the xylem sap of inoculated trees. Myo-inositol concentrations also correlated negatively with σxylem and Kstem. Our study is a preliminary investigation of the role of σxylem in E. polonica infected trees based on previous hypotheses. The results suggest that E. polonica infection can lead to a simultaneous decrease in xylem sap surface tension and a decline in tree hydraulic conductivity, thus hampering tree water transport.
Temporal dynamics of the carbon isotope composition in a Pinus sylvestris stand: from newly assimilated organic carbon to respired carbon dioxide
The ¹³C isotopic signature (C stable isotope ratio; δ¹³C) of CO₂ respired from forest ecosystems and their particular compartments are known to be influenced by temporal changes in environmental conditions affecting C isotope fractionation during photosynthesis. Whereas most studies have assessed temporal variation in δ¹³C of ecosystem-respired CO₂ on a day-to-day scale, not much information is available on its diel dynamics. We investigated environmental and physiological controls over potential temporal changes in δ¹³C of respired CO₂ by following the short-term dynamics of the ¹³C signature from newly assimilated organic matter pools in the needles, via phloem-transported organic matter in twigs and trunks, to trunk-, soil- and ecosystem-respired CO₂. We found a strong 24-h periodicity in δ¹³C of organic matter in leaf and twig phloem sap, which was strongly dampened as carbohydrates were transported down the trunk. Periodicity reappeared in the δ¹³C of trunk-respired CO₂, which seemed to originate from apparent respiratory fractionation rather than from changes in δ¹³C of the organic substrate. The diel patterns of δ¹³C in soil-respired CO₂ are partly explained by soil temperature and moisture and are probably due to changes in the relative contribution of heterotrophic and autotrophic CO₂ fluxes to total soil efflux in response to environmental conditions. Our study shows that direct relations between δ¹³C of recent assimilates and respired CO₂ may not be present on a diel time scale, and other factors lead to short-term variations in δ¹³C of ecosystem-emitted CO₂. On the one hand, these variations complicate ecosystem CO₂ flux partitioning, but on the other hand they provide new insights into metabolic processes underlying respiratory CO₂ emission.