Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
865
result(s) for
"Yao, V. J."
Sort by:
Rapid vascular regrowth in tumors after reversal of VEGF inhibition
by
O'Brien, S.
,
Norberg, S. M.
,
Sennino, B.
in
Actins - metabolism
,
Angiogenesis Inhibitors - pharmacology
,
Angiogenesis Inhibitors - therapeutic use
2006
Inhibitors of VEGF signaling can block angiogenesis and reduce tumor vascularity, but little is known about the reversibility of these changes after treatment ends. In the present study, regrowth of blood vessels in spontaneous RIP-Tag2 tumors and implanted Lewis lung carcinomas in mice was assessed after inhibition of VEGF receptor signaling by AG-013736 or AG-028262 for 7 days. Both agents caused loss of 50%-60% of tumor vasculature. Empty sleeves of basement membrane were left behind. Pericytes also survived but had less alpha-SMA immunoreactivity. One day after drug withdrawal, endothelial sprouts grew into empty sleeves of basement membrane. Vessel patency and connection to the bloodstream followed close behind. By 7 days, tumors were fully revascularized, and the pericyte phenotype returned to baseline. Importantly, the regrown vasculature regressed as much during a second treatment as it did in the first. Inhibition of MMPs or targeting of type IV collagen cryptic sites by antibody HUIV26 did not eliminate the sleeves or slow revascularization. These results suggest that empty sleeves of basement membrane and accompanying pericytes provide a scaffold for rapid revascularization of tumors after removal of anti-VEGF therapy and highlight their importance as potential targets in cancer therapy.
Journal Article
Primary structure of an archaebacterial transducer, a methyl-accepting protein associated with sensory rhodopsin I
by
J L Spudich
,
V J Yao
in
Amino Acid Sequence
,
amino acids
,
Analytical, structural and metabolic biochemistry
1992
A methylated membrane protein of 97 kDa was suggested on the basis of mutant analysis to transduce signals from the phototaxis receptor sensory rhodopsin I to the flagellar motor in Halobacterium halobium. Here we report isolation of the proposed transducer protein, cloning of its gene based on partial protein sequences, the complete gene sequence, and analysis of the encoded primary structure. The 1611-base-pair gene termination codon overlaps the initiator ATG of the sopI gene, which encodes the sensory rhodopsin I apoprotein. The predicted size of 57 kDa for the methylated protein indicates an aberrant electrophoretic migration on SDS/polyacrylamide gels, as occurs with other acidic halophilic proteins. Putative promotor elements are located in an A+T-rich region upstream of the gene. Comparison of the translated nucleotide sequence with N-terminal sequence of the purified protein shows the protein is synthesized without a processed leader peptide and the N-terminal methionine is removed in the mature protein. The deduced protein sequence predicts two transmembrane helices near the N terminal that would anchor the protein to the membrane. Beyond this hydrophobic region of 46 residues, the remainder of the protein (536-amino acid residues total) is hydrophilic. The C-terminal 270 residues contain a region homologous to the signaling domains of eubacterial transducers (e.g., Escherichia coli Tsr protein), flanked by two regions homologous to the methylation domains of the transducer family. The protein differs from E. coli Tsr in that it does not have an extramembranous-receptor binding domain but instead has a more extended cytoplasmic region. Coexpression of the methyl-accepting protein gene (designated htrI) and sopI restores sensory rhodopsin I phototaxis to a mutant (Pho81) that contains a deletion in the htrI/sopI region. These results extend the eubacterial transducer family to the archaebacteria and substantiate the proposal that the methylated membrane protein functions as a signal-transducing relay between sensory rhodopsin I and cytoplasmic sensory-pathway components.
Journal Article
Steps toward mapping the human vasculature by phage display
by
Flamm, Anne
,
Valtanen, Heli
,
Koivunen, Erkki
in
Biomedical and Life Sciences
,
Biomedicine
,
Blood vessels
2002
The molecular diversity of receptors in human blood vessels remains largely unexplored. We developed a selection method in which peptides that home to specific vascular beds are identified after administration of a peptide library. Here we report the first
in vivo
screening of a peptide library in a patient. We surveyed 47,160 motifs that localized to different organs. This large-scale screening indicates that the tissue distribution of circulating peptides is nonrandom. High-throughput analysis of the motifs revealed similarities to ligands for differentially expressed cell-surface proteins, and a candidate ligand–receptor pair was validated. These data represent a step toward the construction of a molecular map of human vasculature and may have broad implications for the development of targeted therapies.
Journal Article
Quantum Information Scrambling on a Superconducting Qutrit Processor
by
Siddiqi, I.
,
Ramasesh, V. V.
,
Morvan, A.
in
Algorithms
,
Circuits
,
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
2021
The dynamics of quantum information in strongly interacting systems, known as quantum information scrambling, has recently become a common thread in our understanding of black holes, transport in exotic non-Fermi liquids, and many-body analogs of quantum chaos. To date, verified experimental implementations of scrambling have focused on systems composed of two-level qubits. Higher-dimensional quantum systems, however, may exhibit different scrambling modalities and are predicted to saturate conjectured speed limits on the rate of quantum information scrambling. We take the first steps toward accessing such phenomena, by realizing a quantum processor based on superconducting qutrits (three-level quantum systems). We demonstrate the implementation of universal two-qutrit scrambling operations and embed them in a five-qutrit quantum teleportation protocol. Measured teleportation fidelitiesFavg=0.568±0.001confirm the presence of scrambling even in the presence of experimental imperfections and decoherence. Our teleportation protocol, which connects to recent proposals for studying traversable wormholes in the laboratory, demonstrates how quantum technology that encodes information in higher-dimensional systems can exploit a larger and more connected state space to achieve the resource efficient encoding of complex quantum circuits.
Journal Article
Imaging stress and magnetism at high pressures using a nanoscale quantum sensor
2019
Pressure alters the physical, chemical, and electronic properties of matter. The diamond anvil cell enables tabletop experiments to investigate a diverse landscape of high-pressure phenomena. Here, we introduce and use a nanoscale sensing platform that integrates nitrogen-vacancy (NV) color centers directly into the culet of diamond anvils. We demonstrate the versatility of this platform by performing diffraction-limited imaging of both stress fields and magnetism as a function of pressure and temperature. We quantify all normal and shear stress components and demonstrate vector magnetic field imaging, enabling measurement of the pressure-driven α ↔ ϵ phase transition in iron and the complex pressure-temperature phase diagram of gadolinium. A complementary NV-sensing modality using noise spectroscopy enables the characterization of phase transitions even in the absence of static magnetic signatures.
Journal Article
Sclerostin antibody stimulates periodontal regeneration in large alveolar bone defects
by
Maekawa, Shogo
,
Holdsworth, Gill
,
Kauffmann, Frederic
in
631/61/490
,
692/699/3020/3029
,
Alveolar bone
2020
Destruction of the alveolar bone in the jaws can occur due to periodontitis, trauma or following tumor resection. Common reconstructive therapy can include the use of bone grafts with limited predictability and efficacy. Romosozumab, approved by the FDA in 2019, is a humanized sclerostin-neutralizing antibody (Scl-Ab) indicated in postmenopausal women with osteoporosis at high risk for fracture. Preclinical models show that Scl-Ab administration preserves bone volume during periodontal disease, repairs bone defects surrounding dental implants, and reverses alveolar bone loss following extraction socket remodeling. To date, there are no studies evaluating Scl-Ab to repair osseous defects around teeth or to identify the efficacy of locally-delivered Scl-Ab for targeted drug delivery. In this investigation, the use of systemically-delivered versus low dose locally-delivered Scl-Ab via poly(lactic-co-glycolic) acid (PLGA) microspheres (MSs) was compared at experimentally-created alveolar bone defects in rats. Systemic Scl-Ab administration improved bone regeneration and tended to increase cementogenesis measured by histology and microcomputed tomography, while Scl-Ab delivered by MSs did not result in enhancements in bone or cemental repair compared to MSs alone or control. In conclusion, systemic administration of Scl-Ab promotes bone and cemental regeneration while local, low dose delivery did not heal periodontal osseous defects in this study.
Journal Article
Cell state dependent effects of Bmal1 on melanoma immunity and tumorigenicity
2024
The circadian clock regulator Bmal1 modulates tumorigenesis, but its reported effects are inconsistent. Here, we show that Bmal1 has a context-dependent role in mouse melanoma tumor growth. Loss of Bmal1 in YUMM2.1 or B16-F10 melanoma cells eliminates clock function and diminishes hypoxic gene expression and tumorigenesis, which could be rescued by ectopic expression of HIF1α in YUMM2.1 cells. By contrast, over-expressed wild-type or a transcriptionally inactive mutant Bmal1 non-canonically sequester myosin heavy chain 9 (Myh9) to increase MRTF-SRF activity and AP-1 transcriptional signature, and shift YUMM2.1 cells from a Sox10
high
to a Sox9
high
immune resistant, mesenchymal cell state that is found in human melanomas. Our work describes a link between Bmal1, Myh9, mouse melanoma cell plasticity, and tumor immunity. This connection may underlie cancer therapeutic resistance and underpin the link between the circadian clock, MRTF-SRF and the cytoskeleton.
It has been reported that the circadian clock regulator Bmal1 can modulate tumorigenesis. Here the authors show that ectopic expression of Bmal1 promotes an immune resistant mesenchymal melanoma cell state associated with increased AP-1 activity.
Journal Article
In situ evidence of the magnetospheric cusp of Jupiter from Juno spacecraft measurements
by
Badman, S. V.
,
Dunn, W. R.
,
Connerney, J. E. P.
in
639/33/445/846
,
639/766/525/869
,
Charged particles
2024
The magnetospheric cusp connects the planetary magnetic field to interplanetary space, offering opportunities for charged particles to precipitate to or escape from the planet. Terrestrial cusps are typically found near noon local time, but the characteristics of the Jovian cusp are unknown. Here we show direct evidence of Jovian cusps using datasets from multiple instruments onboard Juno spacecraft. We find that the cusps of Jupiter are in the dusk sector, which is contradicting Earth-based predictions of a near-noon location. Nevertheless, the characteristics of charged particles in the Jovian cusps resemble terrestrial and Saturnian cusps, implying similar cusp microphysics exist across different planets. These results demonstrate that while the basic physical processes may operate similarly to those at Earth, Jupiter’s rapid rotation and its location in the heliosphere can dramatically change the configuration of the cusp. This work provides useful insights into the fundamental consequences of star-planet interactions, highlighting how planetary environments and rotational dynamics influence magnetospheric structures.
Jovian cusps are not well-known due to limited observations. Here, the authors show that the characteristics of charged particles in the Jovian cusps are similar to those of the Earth and Saturn cusps, and Jupiter’s polar cusp is located in the dusk-side sector, contradicting Earth-based predictions of a near-noon location.
Journal Article
Fully gapped topological surface states in Bi2Se3 films induced by a d-wave high-temperature superconductor
by
Fedorov, Alexei V.
,
Schneeloch, John
,
Chen, Xi
in
639/766/119/1003
,
639/766/119/2792
,
639/766/119/544
2013
By growing a topological insulator on top of a high-temperature superconducting substrate it is possible to induce superconductivity in the surface states of the topological insulator. Moreover, the pairing symmetry of the induced superconductivity is
s
-wave, unlike the
d
-wave symmetry of the substrate.
Topological insulators are a new class of material
1
,
2
, that exhibit robust gapless surface states protected by time-reversal symmetry
3
,
4
. The interplay of such symmetry-protected topological surface states and symmetry-broken states (for example, superconductivity) provides a platform for exploring new quantum phenomena and functionalities, such as one-dimensional chiral or helical gapless Majorana fermions
5
, and Majorana zero modes
6
that may find application in fault-tolerant quantum computation
7
,
8
. Inducing superconductivity on the topological surface states is a prerequisite for their experimental realization
1
,
2
. Here, by growing high-quality topological insulator Bi
2
Se
3
films on a
d
-wave superconductor Bi
2
Sr
2
CaCu
2
O
8+
δ
using molecular beam epitaxy, we are able to induce high-temperature superconductivity on the surface states of Bi
2
Se
3
films with a large pairing gap up to 15 meV. Interestingly, distinct from the
d
-wave pairing of Bi
2
Sr
2
CaCu
2
O
8+
δ
, the proximity-induced gap on the surface states is nearly isotropic and consistent with predominant
s
-wave pairing as revealed by angle-resolved photoemission spectroscopy. Our work could provide a critical step towards the realization of the long sought Majorana zero modes.
Journal Article
ENSO modulates wildfire activity in China
2021
China is a key region for understanding fire activity and the drivers of its variability under strict fire suppression policies. Here, we present a detailed fire occurrence dataset for China, the Wildfire Atlas of China (WFAC; 2005–2018), based on continuous monitoring from multiple satellites and calibrated against field observations. We find that wildfires across China mostly occur in the winter season from January to April and those fire occurrences generally show a decreasing trend after reaching a peak in 2007. Most wildfires (84%) occur in subtropical China, with two distinct clusters in its southwestern and southeastern parts. In southeastern China, wildfires are mainly promoted by low precipitation and high diurnal temperature ranges, the combination of which dries out plant tissue and fuel. In southwestern China, wildfires are mainly promoted by warm conditions that enhance evaporation from litter and dormant plant tissues. We further find a fire occurrence dipole between southwestern and southeastern China that is modulated by the El Niño-Southern Oscillation (ENSO).
Fire activity in China and its associations with climate are not well quantified at a local scale. Here, the authors present a detailed fire occurrence dataset for China and find a dipole fire pattern between southwestern and southeastern China that is modulated by the El Niño-Southern Oscillation (ENSO).
Journal Article