Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
29
result(s) for
"Yasui, Teruhito"
Sort by:
Novel neutralizing human monoclonal antibodies against tetanus neurotoxin
2021
Tetanus is a fatal disease caused by tetanus neurotoxin (TeNT). TeNT is composed of a light chain (Lc) and a heavy chain, the latter of which is classified into two domains, N-terminus Hn and C-terminus Hc. Several TeNT-neutralizing antibodies have been reported, but it remains unclear which TeNT domains are involved in neutralization. To further understand the mechanism of these antibodies, we isolated TeNT-reactive human antibody clones from peripheral blood mononuclear cells. We then analyzed the reactivity of the isolated antibody clones to each protein domain and their inhibition of Hc-ganglioside GT1b binding, which is critical for TeNT toxicity. We also investigated the TeNT-neutralizing ability of isolated antibody clones and showed that an Hn-reactive clone protected strongly against TeNT toxicity in mice. Furthermore, combination treatment of Hn-reactive antibody clones with both Hc-reactive and TeNT mix (the mixture of Hc, Hn, and Lc proteins)–reactive antibody clones enhanced the neutralizing effect. These results indicated that antibody clones targeting Hn effectively neutralized TeNT. In addition, the use of a cocktail composed of Hc-, Hn-, and TeNT mix–reactive antibodies provided enhanced protection compared to the use of each antibody alone.
Journal Article
Optimization of anti-ADAMTS13 antibodies for the treatment of ADAMTS13-related bleeding disorder in patients receiving circulatory assist device support
2021
ADAMTS13 (
a d
isintegrin-like
a
nd
m
etalloproteinase with
t
hrombo
s
pondin type-1 motif
13
)-related bleeding disorder has been frequently observed as a life-threatening clinical complication in patients carrying a circulatory assist device. Currently, treatment modalities for the bleeding disorder are very limited and not always successful. To address the unmet medical need, we constructed humanized antibodies of mouse anti-ADAMTS13 antibody A10 (mA10) by using complementarity-determining region (CDR) grafting techniques with human antibody frameworks, 8A7 and 16E8. The characteristics of the two humanized A10 antibodies, namely A10/8A7 and A10/16E8, were assessed in vitro and in silico. Among the two humanized A10 antibodies, the binding affinity of A10/16E8 to ADAMTS13 was comparable to that of mA10 and human-mouse chimeric A10. In addition, A10/16E8 largely inhibited the ADAMTS13 activity in vitro. The results indicated that A10/16E8 retained the binding affinity and inhibitory activity of mA10. To compare the antibody structures, we performed antibody structure modeling and structural similarity analysis in silico. As a result, A10/16E8 showed higher structural similarity to mA10, compared with A10/8A7, suggesting that A10/16E8 retains a native structure of mA10 as well as its antigen binding affinity and activity. A10/16E8 has great potential as a therapeutic agent for ADAMTS13-related bleeding disorder.
Journal Article
Mouse model of Epstein–Barr virus LMP1- and LMP2A-driven germinal center B-cell lymphoproliferative disease
by
Ma, Yijie
,
Obana, Masanori
,
Tsai, Chao-Yuan
in
B-cell lymphoma
,
B-cell receptor
,
Biological Sciences
2017
Epstein–Barr virus (EBV) is a major cause of immunosuppression-related B-cell lymphomas and Hodgkin lymphoma (HL). In these malignancies, EBV latent membrane protein 1 (LMP1) and LMP2A provide infected B cells with surrogate CD40 and B-cell receptor growth and survival signals. To gain insights into their synergistic in vivo roles in germinal center (GC) B cells, from which most EBV-driven lymphomas arise, we generated a mouse model with conditional GC B-cell LMP1 and LMP2A coexpression. LMP1 and LMP2A had limited effects in immunocompetent mice. However, upon T- and NK-cell depletion, LMP1/2A caused massive plasmablast outgrowth, organ damage, and death. RNA-sequencing analyses identified EBV oncoprotein effects on GC B-cell target genes, including up-regulation of multiple proinflammatory chemokines and master regulators of plasma cell differentiation. LMP1/2A coexpression also up-regulated key HL markers, including CD30 and mixed hematopoietic lineage markers. Collectively, our results highlight synergistic EBV membrane oncoprotein effects on GC B cells and provide a model for studies of their roles in immunosuppression-related lymphoproliferative diseases.
Journal Article
Modeling NK-cell lymphoma in mice reveals its cell-of-origin and microenvironmental changes and identifies therapeutic targets
2024
Extranodal NK/T-cell lymphoma (ENKTCL) is an Epstein-Barr virus (EBV)-related neoplasm preferentially involving the upper aerodigestive tract. Here we show that NK-cell-specific
Trp53
disruption in mice leads to the development of NK-cell lymphomas after long latency, which involve not only the hematopoietic system but also the salivary glands. Before tumor onset,
Trp53
knockout causes extensive gene expression changes, resulting in immature NK-cell expansion, exclusively in the salivary glands. Both human and murine NK-cell lymphomas express tissue-resident markers, suggesting tissue-resident NK cells as their cell-of-origin. Murine NK-cell lymphomas show recurrent
Myc
amplifications and upregulation of MYC target gene signatures. EBV-encoded latent membrane protein 1 expression accelerates NK-cell lymphomagenesis and causes diverse microenvironmental changes, particularly myeloid propagation, through interferon-γ signaling. In turn, myeloid cells support tumor cells via CXCL16-CXCR6 signaling and its inhibition is effective against NK-cell tumors in vivo. Remarkably, KLRG1-expressing cells expand in the tumor and are capable of repopulating tumors in secondary recipients. Furthermore, targeting KLRG1 alone or combined with MYC inhibition using an eIF4 inhibitor is effective against NK-cell tumors. Therefore, our observations provide insights into the pathogenesis and highlight potential therapeutic targets, including CXCL16, KLRG1, and MYC, in ENKTCL, which can help improve its diagnostic and therapeutic strategies.
Extranodal NK/T-cell lymphoma (ENKTCL) is an aggressive Epstein-Barr virus (EBV)-related neoplasm. Here the authors report a genetically engineered mouse model harboring NK-cellspecific
Trp53
deletion to model ENKTCL in mice
Journal Article
Human antibody recognition and neutralization mode on the NTD and RBD domains of SARS-CoV-2 spike protein
by
Tanino, Hiroki
,
Imadome, Ken-Ichi
,
Minamitani, Takeharu
in
631/250/2152/2153/1291
,
631/250/255/2514
,
631/326/596/4130
2022
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). Variants of concern (VOCs) such as Delta and Omicron have developed, which continue to spread the pandemic. It has been reported that these VOCs reduce vaccine efficacy and evade many neutralizing monoclonal antibodies (mAbs) that target the receptor binding domain (RBD) of the glycosylated spike (S) protein, which consists of the S1 and S2 subunits. Therefore, identification of optimal target regions is required to obtain neutralizing antibodies that can counter VOCs. Such regions have not been identified to date. We obtained 2 mAbs, NIBIC-71 and 7G7, using peripheral blood mononuclear cells derived from volunteers who recovered from COVID-19. Both mAbs had neutralizing activity against wild-type SARS-CoV-2 and Delta, but not Omicron. NIBIC-71 binds to the RBD, whereas 7G7 recognizes the N-terminal domain of the S1. In particular, 7G7 inhibited S1/S2 cleavage but not the interaction between the S protein and angiotensin-converting enzyme 2; it suppressed viral entry. Thus, the efficacy of a neutralizing mAb targeting inhibition of S1/2 cleavage was demonstrated. These results suggest that neutralizing mAbs targeting blockade of S1/S2 cleavage are likely to be cross-reactive against various VOCs.
Journal Article
Evasion of affinity-based selection in germinal centers by Epstein–Barr virus LMP2A
by
Ma, Yijie
,
Tsai, Chiau-Yuang
,
Kieff, Elliott
in
Animals
,
Autoantibodies - chemistry
,
Autoimmune Diseases - metabolism
2015
Epstein–Barr virus (EBV) infects germinal center (GC) B cells and establishes persistent infection in memory B cells. EBV-infected B cells can cause B-cell malignancies in humans with T- or natural killer-cell deficiency. We now find that EBV-encoded latent membrane protein 2A (LMP2A) mimics B-cell antigen receptor (BCR) signaling in murine GC B cells, causing altered humoral immune responses and autoimmune diseases. Investigation of the impact of LMP2A on B-cell differentiation in mice that conditionally express LMP2A in GC B cells or all B-lineage cells found LMP2A expression enhanced not only BCR signals but also plasma cell differentiation in vitro and in vivo. Conditional LMP2A expression in GC B cells resulted in preferential selection of low-affinity antibody-producing B cells despite apparently normal GC formation. GC B-cell–specific LMP2A expression led to systemic lupus erythematosus-like autoimmune phenotypes in an age-dependent manner. Epigenetic profiling of LMP2A B cells found increased H3K27ac and H3K4me1 signals at the zinc finger and bric-a-brac, tramtrack domain-containing protein 20 locus. We conclude that LMP2A reduces the stringency of GC B-cell selection and may contribute to persistent EBV infection and pathogenesis by providing GC B cells with excessive prosurvival effects.
Journal Article
BAFF Controls Neural Cell Survival through BAFF Receptor
by
Tada, Satoru
,
Koda, Toru
,
Nakatsuji, Yuji
in
Amyotrophic lateral sclerosis
,
Animal diseases
,
Animal models
2013
Various neuroprotective factors have been shown to help prevention of neuronal cell death, which is responsible for the progression of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). However, most of these therapeutic potentials have been tested by administration of recombinant proteins, transgenic expression or virus vector-mediated gene transfer. Therefore, it remains to be clarified whether any endogenous factors has advantage for neuroprotection in a pathological nervous system. Here we show the role of BAFF-R signaling pathway in the control of neural cell survival. Both B cell-activating factor (BAFF) and its receptor (BAFF-R) are expressed in mouse neurons and BAFF-R deficiency reduces the survival of primary cultured neurons. Although many studies have so far addressed the functional role of BAFF-R on the differentiation of B cells, impaired BAFF-R signaling resulted in accelerated disease progression in an animal model of inherited ALS. We further demonstrate that BAFF-R deficient bone marrow cells or genetic depletion of B cells does not affect the disease progression, indicating that BAFF-mediated signals on neurons, not on B cells, support neural cell survival. These findings suggest opportunities to improve therapeutic outcome for patients with neurodegenerative diseases by synthesized BAFF treatment.
Journal Article
Food odor perception promotes systemic lipid utilization
by
Sugiyama, Masanori
,
Matsuda, Hiroki
,
Tsuneki, Hiroshi
in
14/19
,
631/378/2624
,
631/443/319/1488
2022
Food cues during fasting elicit Pavlovian conditioning to adapt for anticipated food intake. However, whether the olfactory system is involved in metabolic adaptations remains elusive. Here we show that food-odor perception promotes lipid metabolism in male mice. During fasting, food-odor stimulation is sufficient to increase serum free fatty acids via adipose tissue lipolysis in an olfactory-memory-dependent manner, which is mediated by the central melanocortin and sympathetic nervous systems. Additionally, stimulation with a food odor prior to refeeding leads to enhanced whole-body lipid utilization, which is associated with increased sensitivity of the central agouti-related peptide system, reduced sympathetic activity and peripheral tissue-specific metabolic alterations, such as an increase in gastrointestinal lipid absorption and hepatic cholesterol turnover. Finally, we show that intermittent fasting coupled with food-odor stimulation improves glycemic control and prevents insulin resistance in diet-induced obese mice. Thus, olfactory regulation is required for maintaining metabolic homeostasis in environments with either an energy deficit or energy surplus, which could be considered as part of dietary interventions against metabolic disorders.
Prior to consuming a meal, food-odor perception is sufficient to trigger systemic lipid utilization in male mice.
Journal Article
Protein kinase N1, a cell inhibitor of Akt kinase, has a central role in quality control of germinal center formation
2012
Germinal centers (GCs) are specialized microenvironments in secondary lymphoid organs where high-affinity antibody-producing B cells are selected based on B-cell antigen receptor (BCR) signal strength. BCR signaling required for normal GC selection is uncertain. We have found that protein kinase N1 (PKN1, also known as PRK1) negatively regulates Akt kinase downstream of the BCR and that this regulation is necessary for normal GC development. PKN1 interacted with and inhibited Akt1 kinase and transforming activities. Pkn1 ⁻/⁻ B cells were hyperresponsive and had increased phosphorylated Akt1 levels upon BCR stimulation. In the absence of immunization or infection, Pkn1 ⁻/⁻ mice spontaneously formed GCs and developed an autoimmune-like disease with age, which was characterized by autoantibody production and glomerulonephritis. More B cells, with fewer somatic BCR gene V region hypermutations were selected in Pkn1 ⁻/⁻ GCs. These results indicate that PKN1 down-regulation of BCR-activated Akt activity is critical for normal GC B-cell survival and selection.
Journal Article
Enhanced humoral immune responses against T-independent antigens in Fcα/μR-deficient mice
by
Miyamoto, Akitomo
,
Takahashi, Satoru
,
Cho, Yukiko
in
Antibodies
,
antigen-antibody complex
,
Antigens
2009
IgM is an antibody class common to all vertebrates that plays a primary role in host defenses against infection. Binding of IgM with an antigen initiates the complement cascade, accelerating cellular and humoral immune responses. However, the functional role of the Fc receptor for IgM in such immune responses remains obscure. Here we show that mice deficient in Fcα/μR, an Fc receptor for IgM expressed on B cells and follicular dendritic cells (FDCs), have enhanced germinal center formation and affinity maturation and memory induction of IgG3⁺ B cells after immunization with T-independent (TI) antigens. Moreover, Fcα/μR-deficient mice show prolonged antigen retention by marginal zone B (MZB) cells and FDCs. In vitro studies demonstrate that interaction of the IgM immune complex with Fcα/μR partly suppress TI antigen retention by MZB cells. We further show that downregulation of complement receptor (CR)1 and CR2 or complement deprivation by in vivo injection with anti-CR1/2 antibody or cobra venom factor attenuates antigen retention by MZB cells and germinal center formation after immunization with TI antigens in Fcα/μR⁻/⁻ mice. Taken together, these results suggest that Fcα/μR negatively regulates TI antigen retention by MZB cells and FDCs, leading to suppression of humoral immune responses against T-independent antigens.
Journal Article