Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,661
result(s) for
"Ye, Rui"
Sort by:
Potent BRD4 inhibitor suppresses cancer cell-macrophage interaction
2020
Small molecule inhibitor of the bromodomain and extraterminal domain (BET) family proteins is a promising option for cancer treatment. However, current BET inhibitors are limited by their potency or oral bioavailability. Here we report the discovery and characterization of NHWD-870, a BET inhibitor that is more potent than three major clinical stage BET inhibitors BMS-986158, OTX-015, and GSK-525762. NHWD-870 causes tumor shrinkage or significantly suppresses tumor growth in nine xenograft or syngeneic models. In addition to its ability to downregulate c-MYC and directly inhibit tumor cell proliferation, NHWD-870 blocks the proliferation of tumor associated macrophages (TAMs) through multiple mechanisms, partly by reducing the expression and secretion of macrophage colony-stimulating factor CSF1 by tumor cells. NHWD-870 inhibits CSF1 expression through suppressing BRD4 and its target HIF1α. Taken together, these results reveal a mechanism by which BRD4 inhibition suppresses tumor growth, and support further development of NHWD-870 to treat solid tumors.
Inhibitors of the BET family proteins are limited by their potency and oral bio-availability. Here, the authors report a new BET inhibitor, NHWD-870, with improved potency compared to previous BET inhibitors, and show that it suppresses BRD4 and targets tumour associated macrophages.
Journal Article
Porcine milk-derived exosomes promote proliferation of intestinal epithelial cells
2016
Milk-derived exosomes were identified as a novel mechanism of mother-to-child transmission of regulatory molecules, but their functions in intestinal tissues of neonates are not well-studied. Here, we characterized potential roles of porcine milk-derived exosomes in the intestinal tract.
In vitro
, treatment with milk-derived exosomes (27 ± 3 ng and 55 ± 5 ng total RNA) significantly promoted IPEC-J2 cell proliferation by MTT, CCK8, EdU fluorescence and EdU flow cytometry assays. The qRT-PCR and Western blot analyses indicated milk-derived exosomes (0.27 ± 0.03 μg total RNA) significantly promoted expression of CDX2, IGF-1R and PCNA and inhibited p53 gene expression involved in intestinal proliferation. Additionally, six detected miRNAs were significantly increased in IPEC-J2 cell, while
FAS
and
SERPINE
were significantly down-regulated relative to that in control.
In vivo
, treated groups (0.125 μg and 0.25 μg total RNA) significantly raised mice’ villus height, crypt depth and ratio of villus length to crypt depth of intestinal tissues, significantly increased CDX2, PCNA and IGF-1R’ expression and significantly inhibited p53′ expression. Our study demonstrated that milk-derived exosomes can facilitate intestinal cell proliferation and intestinal tract development, thus giving a new insight for milk nutrition and newborn development and health.
Journal Article
Specificity Enhancement of Glutenase Bga1903 toward Celiac Disease-Eliciting Pro-Immunogenic Peptides via Active-Site Modification
2023
Celiac disease is an autoimmune disease triggered by oral ingestion of gluten, with certain gluten residues resistant to digestive tract enzymes. Within the duodenum, the remaining peptides incite immunogenic responses, including the generation of autoantibodies and inflammation, leading to irreversible damage. Our previous exploration unveiled a glutenase called Bga1903 derived from the Gram-negative bacterium Burkholderia gladioli. The cleavage pattern of Bga1903 indicates its moderate ability to mitigate the toxicity of pro-immunogenic peptides. The crystal structure of Bga1903, along with the identification of subsites within its active site, was determined. To improve its substrate specificity toward prevalent motifs like QPQ within gluten peptides, the active site of Bga1903 underwent site-directed mutagenesis according to structural insights and enzymatic kinetics. Among the double-site mutants, E380Q/S387L exhibits an approximately 34-fold increase in its specificity constant toward the QPQ sequence, favoring glutamines at the P1 and P3 positions compared to the wild type. The increased specificity of E380Q/S387L not only enhances its ability to break down pro-immunogenic peptides but also positions this enzyme variant as a promising candidate for oral therapy for celiac disease.
Journal Article
Neutrophil extracellular traps-inspired DNA hydrogel for wound hemostatic adjuvant
2024
Severe traumatic bleeding may lead to extremely high mortality rates, and early intervention to stop bleeding plays as a critical role in saving lives. However, rapid hemostasis in deep non-compressible trauma using a highly water-absorbent hydrogel, combined with strong tissue adhesion and bionic procoagulant mechanism, remains a challenge. In this study, a DNA hydrogel (DNAgel) network composed of natural nucleic acids with rapid water absorption, high swelling and instant tissue adhesion is reported, like a band-aid to physically stop bleeding. The excellent swelling behavior and robust mechanical performance, meanwhile, enable the DNAgel band-aid to fill the defect cavity and exert pressure on the bleeding vessels, thereby achieving compression hemostasis for deep tissue bleeding sites. The neutrophil extracellular traps (NETs)-inspired DNAgel network also acts as an artificial DNA scaffold for erythrocytes to adhere and aggregate, and activates platelets, promoting coagulation cascade in a bionic way. The DNAgel achieves lower blood loss than commercial gelatin sponge (GS) in male rat trauma models. In vivo evaluation in a full-thickness skin incision model also demonstrates the ability of DNAgel for promoting wound healing. Overall, the DNAgel band-aid with great hemostatic capacity is a promising candidate for rapid hemostasis and wound healing.
Rapid hemostasis of deep noncompressible irregularly shaped trauma wounds is challenging. Here the authors report a neutrophil extracellular traps (NETs)-inspired DNA hydrogel that is able to induce NETs-like thrombosis as a physical blockade and biological clot to arrest bleeding in deep tissues.
Journal Article
Smartphone-powered iontophoresis-microneedle array patch for controlled transdermal delivery
2020
The incidence rate of diabetes has been increasing every year in nearly all nations and regions. The traditional control of diabetes using transdermal insulin delivery by metal needles is generally associated with pain and potential infections. While microneedle arrays (MAs) have emerged as painless delivery techniques, the integration of MA systems with electronic devices to precisely control drug delivery has rarely been realized. In this study, we developed an iontophoresis-microneedle array patch (IMAP) powered by a portable smartphone for the active and controllable transdermal delivery of insulin. The IMAP in situ integrates iontophoresis and charged nanovesicles into one patch, achieving a one-step drug administration strategy of “penetration, diffusion and iontophoresis”. The MA of the IMAP is first pressed on the skin to create microholes and then is retracted, followed by the iontophoresis delivery of insulin-loaded nanovesicles through these microholes in an electrically controlled manner. This method has synergistically and remarkably enhanced controlled insulin delivery. The amount of insulin can be effectively regulated by the IMAP by applying different current intensities. This in vivo study has demonstrated that the IMAP effectively delivers insulin and produces robust hypoglycemic effects in a type-1 diabetic rat model, with more advanced controllability and efficiency than delivery by a pristine microneedle or iontophoresis. The IMAP system shows high potential for diabetes therapy and the capacity to provide active as well as long-term glycemic regulation without medical staff care.Smartphone-powered drug delivery deviceA device developed by researchers in China uses a microneedle array to efficiently and painlessly deliver precise doses of insulin and can be used by patients without help from medical staff. The new system was developed by a team led by Xi Xie and Lelun Jiang of Sun Yat-Sen University. The array of microneedles is pressed against the skin to create micro-holes and then automatically retracted. A mild electric current then drives charged nanovesicles carrying insulin through the holes. The circuit is powered and controlled via a smartphone, which can alter the intensity of the current to determine the dosage of insulin delivered. The team showed that the device effectively delivered insulin to a diabetic rat model with no obvious harmful effects. It thus offers a powerful tool for efficient, controllable, and convenient delivery of macromolecular drugs.
Journal Article
Incentivizing inclusive contributions in model sharing markets
2025
Data plays a crucial role in training contemporary AI models, but much of the available public data will be exhausted in a few years, directing the world’s attention toward the massive decentralized private data. However, the privacy-sensitive nature of raw data and lack of incentive mechanism prevent these valuable data from being fully exploited. Here we propose inclusive and incentivized personalized federated learning (iPFL), which incentivizes data holders with diverse purposes to collaboratively train personalized models without revealing raw data. iPFL constructs a model-sharing market by solving a graph-based training optimization and incorporates an incentive mechanism based on game theory principles. Theoretical analysis shows that iPFL adheres to two key incentive properties: individual rationality and Incentive compatibility. Empirical studies on eleven AI tasks (e.g., large language models’ instruction-following tasks) demonstrate that iPFL consistently achieves the highest economic utility, and better or comparable model performance compared to baseline methods.
Private data holds vast potential for AI training but is hindered by privacy concerns and lack of incentives. This work proposes a game-theoretic model sharing market that enables secure, personalized training while incentivizing sharing behavior.
Journal Article
The Effect of Simvastatin on Gut Microbiota and Lipid Metabolism in Hyperlipidemic Rats Induced by a High-Fat Diet
2020
The objective of this study was to investigate the effects of simvastatin (SIM) on lipid metabolism disorders and gut microbiota in high-fat diet-induced hyperlipidemic rats. The obtained results revealed that feeding rats with SIM (20 mg/kg/day) significantly decreased serum lipid level and inhibited hepatic lipid accumulation and steatosis. Histological analysis further indicated that SIM reduced lipid deposition in adipocytes and hepatocytes in comparison with that of the HFD group. The underlying mechanisms of SIM administration against HFD-induced hyperlipidemia were also studied by UPLC-Q-TOF/MS-based liver metabonomics coupled with pathway analysis. Metabolic pathway enrichment analysis of liver metabolites with significant difference in abundance indicated that fatty acids metabolism and amino acid metabolism were the main metabolic pathways altered by SIM administration. Meanwhile, operational taxonomic units (OTUs) analysis revealed that oral administration of SIM altered the composition of gut microbiota, including
(OTU960) and
(OTU152), and so on. Furthermore, SIM treatment also regulated the mRNA levels of the genes involved in lipid and cholesterol metabolism. Immunohistochemistry (IHC) analysis of the liver-related proteins (CD36, CYP7A1 and SREBP-1C) showed that oral administration of SIM could regulate the levels of the protein expression related to hepatic lipid metabolism.
Journal Article
Perfect match: mTOR inhibitors and tuberous sclerosis complex
2022
Tuberous sclerosis complex (TSC) is an autosomal dominant syndrome that presents with diverse and complex clinical features and involves multiple human systems. TSC-related neurological abnormalities and organ dysfunction greatly affect the quality of life and can even result in death in patients with TSC. It is widely accepted that most TSC-related clinical manifestations are associated with hyperactivation of the mammalian target of rapamycin (mTOR) pathway caused by loss‑of‑function mutations in TSC1 or TSC2. Remarkable progress in basic and translational research has led to encouraging clinical advances. Although mTOR inhibitors (rapamycin/everolimus) demonstrate great potential in TSC management, two major concerns hamper their generalized application. One is the frequent manifestation of adverse events, such as stomatitis, infections, and menstrual disorders; and the other is the poor response in certain patients. Thus, indicators are required to effectively predict the efficacy of mTOR inhibitors. Herein, we have summarized the current utilization of mTOR inhibitors in the treatment of TSC and focused on their efficacy and safety, in an attempt to provide a reference to guide the treatment of TSC.
Highlights
Hyperactivation of mammalian target of rapamycin (mTOR) is essential in the pathogenesis of tuberous sclerosis complex (TSC) and can serve as a therapeutic target.
mTOR inhibitors have shown considerable success in multiple clinical trials for the treatment of TSC, including neurological, pulmonary, cardiac, renal, and cutaneous phenotypes.
mTOR inhibitors are associated with adverse events, which should be considered during the management of TSC.
Indicators to predict mTOR inhibitor efficacy are required to select patients who are likely to benefit from such therapy.
Journal Article
Biomimetic self-reinforcing recyclable biomass-derived inherently-safe sustainable materials
by
Ye, Ke-Rui
,
Zhao, Ning
,
Wang, Fu-Gui
in
639/301/54/989
,
639/301/923/1028
,
639/638/298/923/1028
2025
Biomass-derived recyclable materials that can replace petrochemical-derived plastics are highly sought for a sustainable future. However, incumbent materials often face performance deterioration challenges owing to the aging issues after use in the environment. Here, we present a self-reinforcing, recyclable, unprecedented polyester material derived entirely from biomass lignin and soybeans, mimicking the self-reinforcement mechanism of biological systems. Our material leverages a [2 + 2]-cycloaddition reaction mediated by aromatic π-conjugated vinylidene structures, enhancing performance under ultraviolet light, hygrothermal conditions, and external electric fields. Specifically, the tensile strength, elongation at break, and anti-ultraviolet efficiency can be enhanced to 103 MPa, 560%, and 73%, respectively, far surpassing those of known biomass-derived materials and engineered plastics. Additionally, the material demonstrates outstanding insulativity, barrier properties, flame retardancy, solvent resistance, and recyclability, meeting the demands of sustainable green new energy material. Our strategy for this self-reinforcing biomass recyclable material provides rich possibilities for designing next-generation sustainable materials.
Most bio-derived polymers deteriorate during environmental exposure. Here, the authors report a bio-derived polyester containing aromatic p-conjugated vinylidene units, these provided self-reinforcement through [2 + 2] cycloadditions, leading to mechanical enhancements during ageing.
Journal Article
Sinomenine Hydrochloride Can Ameliorate Benign Prostatic Hyperplasia by Lowering the 5α-Reductase 2 Level and Regulating the Balance between the Proliferation and Apoptosis of Cells
2023
Benign prostatic hyperplasia (BPH) is a chronic disease that affects the quality of life of older males. Sinomenine hydrochloride (SIN) is the major bioactive alkaloid isolated from the roots of the traditional Chinese medicinal plant Sinomenium acutum Rehderett Wilson. We wondered if the SIN administration exerted a regulatory effect on BPH and its potential mechanism of action. Mice with testosterone propionate-induced BPH subjected to bilateral orchiectomy were employed for in vivo experiments. A human BPH cell line (BPH-1) was employed for in vitro experiments. SIN administration inhibited the proliferation of BPH-1 cells (p < 0.05) by regulating the expression of androgen-related proteins (steroid 5-alpha reductase 2 (SRD5A2), androgen receptors, prostate-specific antigen), apoptosis-related proteins (B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax)) and proliferation-related proteins (proliferating cell nuclear antigen (PCNA), mammalian target of rapamycin, inducible nitric oxide synthase) in vitro. SIN administration decreased the prostate-gland weight coefficient (p < 0.05) and improved the histological status of mice suffering from BPH. The regulatory effects of SIN administration on SRD5A2, an apoptosis-related protein (Bcl-2), and proliferation-related proteins (PCNA, matrix metalloproteinase-2) were consistent with in vitro data. SIN exerted a therapeutic effect against BPH probably related to lowering the SRD5A2 level and regulating the balance between the proliferation and apoptosis of cells. Our results provide an important theoretical basis for the development of plant medicines for BPH therapy.
Journal Article