Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
49 result(s) for "Ye, Xiaobu"
Sort by:
Detection of tumor-derived DNA in cerebrospinal fluid of patients with primary tumors of the brain and spinal cord
Cell-free DNA shed by cancer cells has been shown to be a rich source of putative tumor-specific biomarkers. Because cell-free DNA from brain and spinal cord tumors cannot usually be detected in the blood, we studied whether the cerebrospinal fluid (CSF) that bathes the CNS is enriched for tumor DNA, here termed CSF-tDNA. We analyzed 35 primary CNS malignancies and found at least one mutation in each tumor using targeted or genome-wide sequencing. Using these patient-specific mutations as biomarkers, we identified detectable levels of CSF-tDNA in 74% [95% confidence interval (95% CI) = 57−88%] of cases. All medulloblastomas, ependymomas, and high-grade gliomas that abutted a CSF space were detectable (100% of 21 cases; 95% CI = 88−100%), whereas no CSF-tDNA was detected in patients whose tumors were not directly adjacent to a CSF reservoir (P< 0.0001, Fisher’s exact test). These results suggest that CSF-tDNA could be useful for the management of patients with primary tumors of the brain or spinal cord.
Focal Radiation Therapy Combined with 4-1BB Activation and CTLA-4 Blockade Yields Long-Term Survival and a Protective Antigen-Specific Memory Response in a Murine Glioma Model
Glioblastoma (GBM) is the most common malignant brain tumor in adults and is associated with a poor prognosis. Cytotoxic T lymphocyte antigen -4 (CTLA-4) blocking antibodies have demonstrated an ability to generate robust antitumor immune responses against a variety of solid tumors. 4-1BB (CD137) is expressed by activated T lymphocytes and served as a co-stimulatory signal, which promotes cytotoxic function. Here, we evaluate a combination immunotherapy regimen involving 4-1BB activation, CTLA-4 blockade, and focal radiation therapy in an immune-competent intracranial GBM model. GL261-luciferace cells were stereotactically implanted in the striatum of C57BL/6 mice. Mice were treated with a triple therapy regimen consisted of 4-1BB agonist antibodies, CTLA-4 blocking antibodies, and focal radiation therapy using a small animal radiation research platform and mice were followed for survival. Numbers of brain-infiltrating lymphocytes were analyzed by FACS analysis. CD4 or CD8 depleting antibodies were administered to determine the relative contribution of T helper and cytotoxic T cells in this regimen. To evaluate the ability of this immunotherapy to generate an antigen-specific memory response, long-term survivors were re-challenged with GL261 glioma en B16 melanoma flank tumors. Mice treated with triple therapy had increased survival compared to mice treated with focal radiation therapy and immunotherapy with 4-1BB activation and CTLA-4 blockade. Animals treated with triple therapy exhibited at least 50% long-term tumor free survival. Treatment with triple therapy resulted in a higher density of CD4+ and CD8+ tumor infiltrating lymphocytes. Mechanistically, depletion of CD4+ T cells abrogated the antitumor efficacy of triple therapy, while depletion of CD8+ T cells had no effect on the treatment response. Combination therapy with 4-1BB activation and CTLA-4 blockade in the setting of focal radiation therapy improves survival in an orthotopic mouse model of glioma by a CD4+ T cell dependent mechanism and generates antigen-specific memory.
Clinical trials of R-(-)-gossypol (AT-101) in newly diagnosed and recurrent glioblastoma: NABTT 0602 and NABTT 0702
AT-101 is an oral bcl-2 family protein inhibitor (Bcl-2, Bcl-XL, Mcl-1, Bcl-W) and potent inducer of proapoptotic proteins. A prior study of the parent compound, racemic gossypol, demonstrated objective and durable responses in patients with malignant glioma. AT-101 has demonstrated synergy with radiation in animal models. The objectives of trial NABTT 0602 were to determine the MTD of AT-101 concurrent with temozolomide (TMZ) and radiation therapy (RT) (Arm I) and to determine the MTD of AT-101 when given with adjuvant TMZ after completion of standard chemoradiation (Arm 2). Separately in trial NABTT 0702, the survival and response rates of single agent AT-101 were evaluated in patients with recurrent glioblastoma. In NABTT 0602 Phase I, a 3+3 design was used to define MTDs after maximal safe resection, patients with newly diagnosed glioblastoma received standard concurrent RT (60 Gy) and TMZ 75 mg/m2/day followed by adjuvant TMZ 150-200 mg/m2 days 1-5 in 28-day cycles (Stupp regimen). In Arm I, AT-101 was administered M-F during the six weeks of RT beginning 20 mg qd. In Arm 2, concurrent with each adjuvant cycle of TMZ, AT-101 was administered at a starting dose of 20 mg, days 1-21 followed by 7-day break for a maximum of 6 cycles. The PK blood samples were collected in the first three patients in each cohort of arm 1. In NABTT 0702 patients with recurrent glioblastoma received 20 mg p.o. per day for 21 of 28 days in repeated cycles to assess overall survival (OS). A total of sixteen patients were enrolled on the two study arms of NABTT 0602. In Arm 1 AT-101 was escalated from 20 to 30 mg where one of six patients experienced DLT (grade 3 GI ulcer). On Arm 2 one patient treated at 20 mg experienced DLT (grade 3 ileus, nausea and diarrhea). The cohort was expanded to include seven patients without observation of DLT. PK results were consistent with drug levels from non-CNS studies. At study closure six patients are still alive. The median survival times for Arm I and Arm II are 15.2 months and 18.2 months, respectively. In NABTT 0702 fifty-six patients were enrolled and forty-three were eligible for imaging response. Sixteen patients (29%) had stable disease as best response and one partial response was observed. The median OS with single agent AT-101 was 5.7 months (95%CI: 3.8-7.6 months) for patients with rGBM. AT-101 can be safely administered with radiation therapy and TMZ in patients with newly diagnosed glioblastoma without toxicity unique to patients with CNS tumors. Because of toxicity observed in non-CNS AT-101 clinical trials, further dose-escalation was not attempted. The recommended dose for future studies that utilize continual AT-101 exposure is 20 mg days M-F concurrent with RT/TMZ and 20 mg days 1-21 for each 28-day cycle of TMZ. AT-101 has limited activity as a single agent in unselected patients with recurrent glioblastoma. Future trials should attempt to better understand resistance mechanisms and consider combination therapy.
Agonist anti-GITR monoclonal antibody and stereotactic radiation induce immune-mediated survival advantage in murine intracranial glioma
BackgroundGlioblastoma (GBM) is a poorly immunogenic neoplasm treated with focused radiation. Immunotherapy has demonstrated synergistic survival effects with stereotactic radiosurgery (SRS) in murine GBM. GITR is a co-stimulatory molecule expressed constitutively on regulatory T-cells and by effector T-cells upon activation. We tested the hypothesis that anti-GITR monoclonal antibody (mAb) and SRS together would confer an immune-mediated survival benefit in glioma using the orthotopic GL261 glioma model.MethodsMice received SRS and anti-GITR 10 days after implantation. The anti-GITR mAbs tested were formatted as mouse IgG1 D265A (anti-GITR (1)) and IgG2a (anti-GITR (2a)) isotypes. Mice were randomized to four treatment groups: (1) control; (2) SRS; (3) anti-GITR; (4) anti-GITR/SRS. SRS was delivered to the tumor in one fraction, and mice were treated with mAb thrice. Mice were euthanized on day 21 to analyze the immunologic profile of tumor, spleen, and tumor draining lymph nodes.ResultsAnti-GITR (1)/SRS significantly improved survival over either treatment alone (p < .0001) with a cure rate of 24 % versus 0 % in a T-lymphocyte-dependent manner. There was elevated intratumoral CD4+ effector cell infiltration relative to Treg infiltration in mice treated with anti-GITR (1)/SRS, as well as significantly elevated IFNγ and IL-2 production by CD4+ T-cells and elevated IFNγ and TNFα production by CD8+ T-cells. There was increased mRNA expression of M1 markers and decreased expression of M2 markers in tumor infiltrating mononuclear cells. The anti-GITR (2a)/SRS combination did not improve survival, induce tumor regression, or result in Treg depletion.ConclusionsThese findings provide preclinical evidence for the use of anti-GITR (1) non-depleting antibodies in combination with SRS in GBM.
Pneumothorax in Cystic Fibrosis
Spontaneous pneumothorax is a complication that is commonly reported in patients with cystic fibrosis (CF). An understanding of the pathophysiology of this complication and its consequences is important for the management of patients with CF To identify risk factors associated with pneumothorax and to determine the prognosis of CF patients following an episode of pneumothorax A retrospective observational cohort study of the National Cystic Fibrosis Patient Registry between the years 1990 and 1999 The registry contained data on 28,858 patients with CF who had been followed up over those10 years at CF centers across the United States Pneumothorax occurred with an average annual incidence of 0.64% and in 3.4% of patients overall. There was no increased occurrence by sex, but CF was more prevalent in older patients (mean [± SD] age, 21.9 ± 9.1 years) with more severe pulmonary impairment (nearly 75% of patients with FEV1of < 40% predicted). The principal risks associated with an increased occurrence of pneumothorax included the presence ofPseudomonas aeruginosa(odds ratio [OR], 2.3),Burkholderia cepacia(OR, 1.8), or Aspergillus (OR, 1.3) in sputum cultures, FEV1< 30% predicted (OR, 1.5), enteral feeding (OR, 1.7), Medicaid insurance (OR, 1.1), pancreatic insufficiency (OR, 1.4), allergic bronchopulmonary aspergillosis (OR, 1.5), and massive hemoptysis (OR, 1.4). There is an increased morbidity (eg, increased number of hospitalizations and number of days spent in the hospital) and an increased 2-year mortality rate following pneumothorax Pneumothorax is a serious complication in CF patients, occurring more commonly in older patients with more advanced lung disease. Nearly 1 in 167 patients will experience this complication each year. There is an attributable mortality to the complication and considerable morbidity, resulting in increased health-care utilization and a measurable decline in lung function
The effect of an adenosine A2A agonist on intra-tumoral concentrations of temozolomide in patients with recurrent glioblastoma
Background The blood–brain barrier (BBB) severely limits the entry of systemically administered drugs including chemotherapy to the brain. In rodents, regadenoson activation of adenosine A 2A receptors causes transient BBB disruption and increased drug concentrations in normal brain. This study was conducted to evaluate if activation of A 2A receptors would increase intra-tumoral temozolomide concentrations in patients with glioblastoma. Methods Patients scheduled for a clinically indicated surgery for recurrent glioblastoma were eligible. Microdialysis catheters (MDC) were placed intraoperatively, and the positions were documented radiographically. On post-operative day #1, patients received oral temozolomide (150 mg/m 2 ). On day #2, 60 min after oral temozolomide, patients received one intravenous dose of regadenoson (0.4 mg). Blood and MDC samples were collected to determine temozolomide concentrations. Results Six patients were enrolled. Five patients had no complications from the MDC placement or regadenoson and had successful collection of blood and dialysate samples. The mean plasma AUC was 16.4 ± 1.4 h µg/ml for temozolomide alone and 16.6 ± 2.87 h µg/ml with addition of regadenoson. The mean dialysate AUC was 2.9 ± 1.2 h µg/ml with temozolomide alone and 3.0 ± 1.7 h µg/ml with regadenoson. The mean brain:plasma AUC ratio was 18.0 ± 7.8 and 19.1 ± 10.7% for temozolomide alone and with regadenoson respectively. Peak concentration and T max in brain were not significantly different. Conclusions Although previously shown to be efficacious in rodents to increase varied size agents to cross the BBB, our data suggest that regadenoson does not increase temozolomide concentrations in brain. Further studies exploring alternative doses and schedules are needed; as transiently disrupting the BBB to facilitate drug entry is of critical importance in neuro-oncology.
Clinical trials of R- in newly diagnosed and recurrent glioblastoma: NABTT 0602 and NABTT 0702
Purpose AT-101 is an oral bcl-2 family protein inhibitor (Bcl-2, Bcl-X.sub.L, Mcl-1, Bcl-W) and potent inducer of proapoptotic proteins. A prior study of the parent compound, racemic gossypol, demonstrated objective and durable responses in patients with malignant glioma. AT-101 has demonstrated synergy with radiation in animal models. The objectives of trial NABTT 0602 were to determine the MTD of AT-101 concurrent with temozolomide (TMZ) and radiation therapy (RT) (Arm I) and to determine the MTD of AT-101 when given with adjuvant TMZ after completion of standard chemoradiation (Arm 2). Separately in trial NABTT 0702, the survival and response rates of single agent AT-101 were evaluated in patients with recurrent glioblastoma. Methods In NABTT 0602 Phase I, a 3+3 design was used to define MTDs after maximal safe resection, patients with newly diagnosed glioblastoma received standard concurrent RT (60 Gy) and TMZ 75 mg/m2/day followed by adjuvant TMZ 150-200 mg/m2 days 1-5 in 28-day cycles (Stupp regimen). In Arm I, AT-101 was administered M-F during the six weeks of RT beginning 20 mg qd. In Arm 2, concurrent with each adjuvant cycle of TMZ, AT-101 was administered at a starting dose of 20 mg, days 1-21 followed by 7-day break for a maximum of 6 cycles. The PK blood samples were collected in the first three patients in each cohort of arm 1. In NABTT 0702 patients with recurrent glioblastoma received 20 mg p.o. per day for 21 of 28 days in repeated cycles to assess overall survival (OS). Results A total of sixteen patients were enrolled on the two study arms of NABTT 0602. In Arm 1 AT-101 was escalated from 20 to 30 mg where one of six patients experienced DLT (grade 3 GI ulcer). On Arm 2 one patient treated at 20 mg experienced DLT (grade 3 ileus, nausea and diarrhea). The cohort was expanded to include seven patients without observation of DLT. PK results were consistent with drug levels from non-CNS studies. At study closure six patients are still alive. The median survival times for Arm I and Arm II are 15.2 months and 18.2 months, respectively. In NABTT 0702 fifty-six patients were enrolled and forty-three were eligible for imaging response. Sixteen patients (29%) had stable disease as best response and one partial response was observed. The median OS with single agent AT-101 was 5.7 months (95%CI: 3.8-7.6 months) for patients with rGBM. Conclusions AT-101 can be safely administered with radiation therapy and TMZ in patients with newly diagnosed glioblastoma without toxicity unique to patients with CNS tumors. Because of toxicity observed in non-CNS AT-101 clinical trials, further dose-escalation was not attempted. The recommended dose for future studies that utilize continual AT-101 exposure is 20 mg days M-F concurrent with RT/TMZ and 20 mg days 1-21 for each 28-day cycle of TMZ. AT-101 has limited activity as a single agent in unselected patients with recurrent glioblastoma. Future trials should attempt to better understand resistance mechanisms and consider combination therapy.
Clinical trials of R
AT-101 is an oral bcl-2 family protein inhibitor (Bcl-2, Bcl-X.sub.L, Mcl-1, Bcl-W) and potent inducer of proapoptotic proteins. A prior study of the parent compound, racemic gossypol, demonstrated objective and durable responses in patients with malignant glioma. AT-101 has demonstrated synergy with radiation in animal models. The objectives of trial NABTT 0602 were to determine the MTD of AT-101 concurrent with temozolomide (TMZ) and radiation therapy (RT) (Arm I) and to determine the MTD of AT-101 when given with adjuvant TMZ after completion of standard chemoradiation (Arm 2). Separately in trial NABTT 0702, the survival and response rates of single agent AT-101 were evaluated in patients with recurrent glioblastoma. In NABTT 0602 Phase I, a 3+3 design was used to define MTDs after maximal safe resection, patients with newly diagnosed glioblastoma received standard concurrent RT (60 Gy) and TMZ 75 mg/m2/day followed by adjuvant TMZ 150-200 mg/m2 days 1-5 in 28-day cycles (Stupp regimen). In Arm I, AT-101 was administered M-F during the six weeks of RT beginning 20 mg qd. In Arm 2, concurrent with each adjuvant cycle of TMZ, AT-101 was administered at a starting dose of 20 mg, days 1-21 followed by 7-day break for a maximum of 6 cycles. The PK blood samples were collected in the first three patients in each cohort of arm 1. In NABTT 0702 patients with recurrent glioblastoma received 20 mg p.o. per day for 21 of 28 days in repeated cycles to assess overall survival (OS). A total of sixteen patients were enrolled on the two study arms of NABTT 0602. In Arm 1 AT-101 was escalated from 20 to 30 mg where one of six patients experienced DLT (grade 3 GI ulcer). On Arm 2 one patient treated at 20 mg experienced DLT (grade 3 ileus, nausea and diarrhea). The cohort was expanded to include seven patients without observation of DLT. PK results were consistent with drug levels from non-CNS studies. At study closure six patients are still alive. The median survival times for Arm I and Arm II are 15.2 months and 18.2 months, respectively. In NABTT 0702 fifty-six patients were enrolled and forty-three were eligible for imaging response. Sixteen patients (29%) had stable disease as best response and one partial response was observed. The median OS with single agent AT-101 was 5.7 months (95%CI: 3.8-7.6 months) for patients with rGBM. AT-101 can be safely administered with radiation therapy and TMZ in patients with newly diagnosed glioblastoma without toxicity unique to patients with CNS tumors. Because of toxicity observed in non-CNS AT-101 clinical trials, further dose-escalation was not attempted. The recommended dose for future studies that utilize continual AT-101 exposure is 20 mg days M-F concurrent with RT/TMZ and 20 mg days 1-21 for each 28-day cycle of TMZ. AT-101 has limited activity as a single agent in unselected patients with recurrent glioblastoma. Future trials should attempt to better understand resistance mechanisms and consider combination therapy.
Clinical trials of R
AT-101 is an oral bcl-2 family protein inhibitor (Bcl-2, Bcl-X.sub.L, Mcl-1, Bcl-W) and potent inducer of proapoptotic proteins. A prior study of the parent compound, racemic gossypol, demonstrated objective and durable responses in patients with malignant glioma. AT-101 has demonstrated synergy with radiation in animal models. The objectives of trial NABTT 0602 were to determine the MTD of AT-101 concurrent with temozolomide (TMZ) and radiation therapy (RT) (Arm I) and to determine the MTD of AT-101 when given with adjuvant TMZ after completion of standard chemoradiation (Arm 2). Separately in trial NABTT 0702, the survival and response rates of single agent AT-101 were evaluated in patients with recurrent glioblastoma. In NABTT 0602 Phase I, a 3+3 design was used to define MTDs after maximal safe resection, patients with newly diagnosed glioblastoma received standard concurrent RT (60 Gy) and TMZ 75 mg/m2/day followed by adjuvant TMZ 150-200 mg/m2 days 1-5 in 28-day cycles (Stupp regimen). In Arm I, AT-101 was administered M-F during the six weeks of RT beginning 20 mg qd. In Arm 2, concurrent with each adjuvant cycle of TMZ, AT-101 was administered at a starting dose of 20 mg, days 1-21 followed by 7-day break for a maximum of 6 cycles. The PK blood samples were collected in the first three patients in each cohort of arm 1. In NABTT 0702 patients with recurrent glioblastoma received 20 mg p.o. per day for 21 of 28 days in repeated cycles to assess overall survival (OS). A total of sixteen patients were enrolled on the two study arms of NABTT 0602. In Arm 1 AT-101 was escalated from 20 to 30 mg where one of six patients experienced DLT (grade 3 GI ulcer). On Arm 2 one patient treated at 20 mg experienced DLT (grade 3 ileus, nausea and diarrhea). The cohort was expanded to include seven patients without observation of DLT. PK results were consistent with drug levels from non-CNS studies. At study closure six patients are still alive. The median survival times for Arm I and Arm II are 15.2 months and 18.2 months, respectively. In NABTT 0702 fifty-six patients were enrolled and forty-three were eligible for imaging response. Sixteen patients (29%) had stable disease as best response and one partial response was observed. The median OS with single agent AT-101 was 5.7 months (95%CI: 3.8-7.6 months) for patients with rGBM. AT-101 can be safely administered with radiation therapy and TMZ in patients with newly diagnosed glioblastoma without toxicity unique to patients with CNS tumors. Because of toxicity observed in non-CNS AT-101 clinical trials, further dose-escalation was not attempted. The recommended dose for future studies that utilize continual AT-101 exposure is 20 mg days M-F concurrent with RT/TMZ and 20 mg days 1-21 for each 28-day cycle of TMZ. AT-101 has limited activity as a single agent in unselected patients with recurrent glioblastoma. Future trials should attempt to better understand resistance mechanisms and consider combination therapy.
A multi-site phase I trial of Veliparib with standard radiation and temozolomide in patients with newly diagnosed glioblastoma multiforme (GBM)
Purpose A multi-site Phase I trial was conducted to determine the safety, maximum tolerated dose, and pharmacokinetics (PK) of Veliparib, a Poly (ADP-ribose) polymerase [PARP] enzyme inhibitor, when administered with temozolomide (TMZ) alone and then with temozolomide and radiation (RT) in patients with newly diagnosed glioblastoma. Methods Given the potential for myelosuppression when a PARP inhibitor is combined with chemotherapy, the first 6 patients accrued were given Veliparib 10 mg bid and TMZ 75 mg/m2/d daily for six weeks. If this was well tolerated, the same doses of Veliparib and TMZ would be tested along with standard radiation with plans to dose escalate the Veliparib in subsequent patient cohorts. Once a maximal tolerated dose was determined, a 78 patient phase II study was planned. Peripheral blood pharmacokinetics were assessed. Results Twenty-four patients were enrolled. In the first 6 patients who received 6 weeks of TMZ with Veliparib only one dose limiting toxicity (DLT) occurred. The next 12 patients received 6 weeks of RT + TMZ + veliparib and 4/12 (33%) had dose limiting hematologic toxicities. As a result, Veliparib was reduced by 50% to 10 mg BID every other week, but again 3/3 patients had dose limiting hematologic toxicities. The trial was then terminated. The mean clearance (± SD) CL/F of Veliparib for the initial dose (27.0 ± 9.0 L/h, n = 16) and at steady-state for 10 mg BID (23.5 ± 10.4 L/h, n = 18) were similar. Accumulation for BID dosing was 56% (± 33%). Conclusions Although Veliparib 10 mg BID administered with TMZ 75 mg/m2 for six weeks was well tolerated, when this regimen was combined with standard partial brain irradiation it was severely myelosuppressive even when the dose was reduced by 50%. This study again highlights the potential of localized cranial radiotherapy to significantly increase hematologic toxicity of marginally myelosuppressive systemic therapies.