Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
8
result(s) for
"Yeganeh, Meghdad"
Sort by:
Cell Immortality: In Vitro Effective Techniques to Achieve and Investigate Its Applications and Challenges
by
Mirbahari, Seyedeh Nasim
,
Rajabi, Sarah
,
Yeganeh, Meghdad
in
Aging
,
Animal models
,
Brain research
2024
Cells are very important to researchers due to their use in various biological studies in in vitro and in vivo settings. This importance stems from the short lifespan of most cells under laboratory conditions, which can pose significant challenges, such as the difficulties associated with extraction from the source tissue, ethical concerns about separating cells from human or animal models, limited cell passage ability, and variation in results due to differences in the source of the obtained cells, among other issues. In general, cells in laboratory conditions can divide into a limited number, known as the Hayflick limit, due to telomere erosion at the end of each cellular cycle. Given this problem, researchers require cell lines that do not enter the senescence phase after a limited number of divisions. This can allow for more stable studies over time, prevent the laborious work associated with cell separation and repeated cultivation, and save time and money in research projects. The aim of this review is to summarize the function and effect of immortalization techniques, various methods, their advantages and disadvantages, and ultimately the application of immortalization and cell line production in various research fields.
Journal Article
A facile method to generate cerebral organoids from human pluripotent stem cells
by
To, San Kit
,
Wierda, Keimpe
,
Yeganeh, Meghdad
in
Calcium (intracellular)
,
Cell culture
,
Cell differentiation
2023
Human cerebral organoids (COs) are self-organizing three-dimensional (3D) neural structures that provide a human-specific platform to study the cellular and molecular processes that underlie different neurological events. The first step of CO generation from human pluripotent stem cells (hPSCs) is neural induction, which is an in vitro simulation of neural ectoderm development. Several signaling pathways cooperate during neural ectoderm development and in vitro differentiation of hPSCs toward neural cell lineages is also affected by them. In this study, we considered some of the known sources of these variable signaling cues arising from cell culture media components and sought to modulate their effects by applying a comprehensive combination of small molecules and growth factors for CO generation. Histological analysis demonstrated that these COs recapitulate the neural progenitor zone and early cortical layer organization, containing different types of neuronal and glial cells which was in accordance with single-nucleus transcriptome profiling results. Moreover, patch clamp and intracellular Ca2+ dynamic studies demonstrated that the COs behave as a functional neural network. Thus, this method serves as a facile protocol for generating hPSC-derived COs that faithfully mimic the features of their in vivo counterparts in the developing human brain.
Journal Article
Efficient Differentiation of Human Embryonic Stem Cells Toward Dopaminergic Neurons Using Recombinant LMX1A Factor
by
Rasouli, Hassan
,
Yeganeh, Meghdad
,
Fathi, Ali
in
Biochemistry
,
Biological Techniques
,
Biotechnology
2015
Direct differentiation of dopaminergic (DA) neurons from human pluripotent stem cells (hPSCs) in the absence of gene manipulation is the most desired alternative to clinical treatment of Parkinson disease. Protein transduction-based methods could be efficient, safe approaches to enhance direct differentiation of human embryonic stem cells (hESCs) to DA neurons. In the present study, we compared the differentiation efficiency of DA neurons from hESCs with and without the application of LIM homeobox transcription factor 1 alpha (LMX1A), a master regulatory protein in the development of the midbrain neurons and SHH proteins. The results obtained revealed that the treatment of hESCs with recombinant LMX1A (rLMX1A) protein along with dual SMAD inhibition led to higher expression of LMX1B, LMX1A, FOXA2, PITX3, EN1, and WNT1 effector endogenous genes and two-fold expression of PITX3. Moreover, the highest expression level of PITX3 and TH was observed when rLMX1A was added to the induction medium supplemented with SHH. To our best knowledge, this is the first report demonstrating the application of TAT-LMX1A recombinant protein to enhance hESC differentiation to DA as shown by the expression of DA specific makers. These findings pave the way for enhancing the differentiation of hESCs to DA neurons safely and efficiently without genetic modification.
Journal Article
ISL1 Protein Transduction Promotes Cardiomyocyte Differentiation from Human Embryonic Stem Cells
by
Fattahi, Faranak
,
Fonoudi, Hananeh
,
Yeganeh, Meghdad
in
Actinin
,
Agricultural biotechnology
,
Biocompatibility
2013
Human embryonic stem cells (hESCs) have the potential to provide an unlimited source of cardiomyocytes, which are invaluable resources for drug or toxicology screening, medical research, and cell therapy. Currently a number of obstacles exist such as the insufficient efficiency of differentiation protocols, which should be overcome before hESC-derived cardiomyocytes can be used for clinical applications. Although the differentiation efficiency can be improved by the genetic manipulation of hESCs to over-express cardiac-specific transcription factors, these differentiated cells are not safe enough to be applied in cell therapy. Protein transduction has been demonstrated as an alternative approach for increasing the efficiency of hESCs differentiation toward cardiomyocytes.
We present an efficient protocol for the differentiation of hESCs in suspension by direct introduction of a LIM homeodomain transcription factor, Islet1 (ISL1) recombinant protein into the cells.
We found that the highest beating clusters were derived by continuous treatment of hESCs with 40 µg/ml recombinant ISL1 protein during days 1-8 after the initiation of differentiation. The treatment resulted in up to a 3-fold increase in the number of beating areas. In addition, the number of cells that expressed cardiac specific markers (cTnT, CONNEXIN 43, ACTININ, and GATA4) doubled. This protocol was also reproducible for another hESC line.
This study has presented a new, efficient, and reproducible procedure for cardiomyocytes differentiation. Our results will pave the way for scaled up and controlled differentiation of hESCs to be used for biomedical applications in a bioreactor culture system.
Journal Article
Cell Immortality: IIn Vitro/I Effective Techniques to Achieve and Investigate Its Applications and Challenges
2024
Cells are very important to researchers due to their use in various biological studies in in vitro and in vivo settings. This importance stems from the short lifespan of most cells under laboratory conditions, which can pose significant challenges, such as the difficulties associated with extraction from the source tissue, ethical concerns about separating cells from human or animal models, limited cell passage ability, and variation in results due to differences in the source of the obtained cells, among other issues. In general, cells in laboratory conditions can divide into a limited number, known as the Hayflick limit, due to telomere erosion at the end of each cellular cycle. Given this problem, researchers require cell lines that do not enter the senescence phase after a limited number of divisions. This can allow for more stable studies over time, prevent the laborious work associated with cell separation and repeated cultivation, and save time and money in research projects. The aim of this review is to summarize the function and effect of immortalization techniques, various methods, their advantages and disadvantages, and ultimately the application of immortalization and cell line production in various research fields.
Journal Article
Correction to: Efficient Differentiation of Human Embryonic Stem Cells Toward Dopaminergic Neurons Using Recombinant LMX1A Factor
2019
The original version of this article was published without article note. The article note is given below.
Journal Article
RNA-binding protein Rbm47 binds to Nanog in mouse embryonic stem cells
by
Yeganeh, Meghdad
,
Seyedjafari, Ehsan
,
Ghaemi, Nasser
in
Animal Anatomy
,
Animal Biochemistry
,
Animals
2013
:
Embryonic stem cells (ES cells) are pluripotent cells capable for self-renewal and to differentiate to all cell types. Finding the molecular mechanisms responsible for these unique characteristics of ES cells is important. RNA-binding proteins play important roles in post-transcriptional gene regulation by binding to specific mRNA targets. In this study, we investigated the targets of RNA-binding protein Rbm47 in mouse ES cells. Overexpression of HA epitope-tagged Rbm47 in mouse ES cells followed by RNA-binding protein immunoprecipitation, and then RT-PCR analysis of co-immunoprecipitated RNA showed that Rbm47 binds to Nanog transcript in mouse ES cells and doesn’t bind to Sox2 and Oct4 transcripts in these cells. This finding can give rise to reveal molecular mechanisms underlying pluripotency and stemness of ES cells and will be necessary for efficient application of these cells in regenerative medicine and tissue engineering.
Journal Article