Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
267 result(s) for "Yi, Guohui"
Sort by:
Money for operator: the impact of linked agricultural subsidy on incomes
The reform of China’s “three subsidies” has shifted the method of subsidization from payment based on the contracted area to payment based on the actual operational area. Within this context, studying the income-generating impact of the “three subsidies” holds significant practical relevance. Using data from the 2018 China Labor-force Dynamic Survey, this paper employs basic estimation, mediating effect, and moderating effect models to analyze the heterogeneity of agricultural subsidies’ impact on rural household income, the mediating effect of agricultural mechanization, and the moderating effect of operation scale. Our findings indicate that agricultural subsidies, known as the “three subsidies”, have increased total rural household income and agricultural income while decreasing wage income. However, they have shown no significant impact on business income. Notably, agricultural subsidies have significantly elevated the income of food-producing households, with agricultural mechanization partially mediating this effect. Operation scale positively moderates the impact of agricultural subsidies on rural household income and agricultural mechanization. Heterogeneity analysis indicates that agricultural subsidies have a more significant impact on rural household income among agricultural producers in the eastern region.
Genome characterization based on the Spike-614 and NS8-84 loci of SARS-CoV-2 reveals two major possible onsets of the COVID-19 pandemic
The global COVID-19 pandemic has lasted for 3 years since its outbreak, however its origin is still unknown. Here, we analyzed the genotypes of 3.14 million SARS-CoV-2 genomes based on the amino acid 614 of the Spike (S) and the amino acid 84 of NS8 (nonstructural protein 8), and identified 16 linkage haplotypes. The GL haplotype (S_614G and NS8_84L) was the major haplotype driving the global pandemic and accounted for 99.2% of the sequenced genomes, while the DL haplotype (S_614D and NS8_84L) caused the pandemic in China in the spring of 2020 and accounted for approximately 60% of the genomes in China and 0.45% of the global genomes. The GS (S_614G and NS8_84S), DS (S_614D and NS8_84S), and NS (S_614N and NS8_84S) haplotypes accounted for 0.26%, 0.06%, and 0.0067% of the genomes, respectively. The main evolutionary trajectory of SARS-CoV-2 is DS→DL→GL, whereas the other haplotypes are minor byproducts in the evolution. Surprisingly, the newest haplotype GL had the oldest time of most recent common ancestor (tMRCA), which was May 1 2019 by mean, while the oldest haplotype DS had the newest tMRCA with a mean of October 17, indicating that the ancestral strains that gave birth to GL had been extinct and replaced by the more adapted newcomer at the place of its origin, just like the sequential rise and fall of the delta and omicron variants. However, the haplotype DL arrived and evolved into toxic strains and ignited a pandemic in China where the GL strains had not arrived in by the end of 2019. The GL strains had spread all over the world before they were discovered, and ignited the global pandemic, which had not been noticed until the virus was declared in China. However, the GL haplotype had little influence in China during the early phase of the pandemic due to its late arrival as well as the strict transmission controls in China. Therefore, we propose two major onsets of the COVID-19 pandemic, one was mainly driven by the haplotype DL in China, the other was driven by the haplotype GL globally.
Correlation between Chemical Composition and Antifungal Activity of Clausena lansium Essential Oil against Candida spp
Essential oils (EOs) have been shown to have a diversity of beneficial human health effects. Clausena is a large and highly diverse genus of plants with medicinal and cosmetic significance. The aim of this study was to analyze the composition of Clausena lansium EOs and to investigate their potential antifungal effects. The chemical compositions of Clausena lansium EOs obtained by hydrodistillation were analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 101 compounds were identified among the diverse extracts of C. lansium. EOs of leaves and pericarps from different cultivars (Hainan local wampee and chicken heart wampee) collected in Hainan (China) were classified into four clusters based on their compositions. These clusters showed different antifungal activities against five Candida species (C. albicans, C. tropicalis, C. glabrata, C. krusei and C. parapsilosis) using the disc diffusion method. Clausena lansium EOs of pericarps displayed noteworthy antifungal activitives against all the tested Candida strains with inhibition zone diameters in the range of 11.1–23.1 mm. EOs of leaves showed relatively low antifungal activities with inhibition zone diameters in the range of 6.5–22.2 mm. The rank order of antifungal activities among the four EO clusters was as follows: Cluster IV> Cluster III > Cluster I ≥ Cluster II. These results represent the first report about the correlation between chemical composition of C. lansium EOs and antifungal activity. Higher contents of β-phellandrene, β-sesquiphellandrene and β-bisabolene in EOs of pericarps were likely responsible for the high antifungal activity of Cluster IV EOs. Taken together, our results demonstrate the chemical diversity of Clausena lansium EOs and their potential as novel antifungal agents for candidiasis caused by Candida spp. Furthermore, the obtained results showing a wide spectrum of antifungal activities provide scientific evidence for the traditional use of these plants.
RNA-Seq-Based Transcriptomics and GC–MS Quantitative Analysis Reveal Antifungal Mechanisms of Essential Oil of Clausena lansium (Lour.) Skeels Seeds against Candida albicans
Infections caused by Candida albicans (C. albicans) and increasing resistance to commonly used drugs lead to a variety of mucosal diseases and systemic infectious diseases. We previously confirmed that the essential oil of Clausena lansium (Lour.) Skeels seeds (CSEO) had antifungal activity against C. albicans, but the detailed mechanism between the chemical components and antifungal activity is unclear. In this study, a quantitative analysis of five volatile components of CSEO, including sabinene, α-phellandrene, β-phellandrene, 4-terpineol, and β-caryophyllene, was carried out using the gas chromatography–mass spectrometry (GC–MS) method. Both the broth dilution and kinetic growth methods proved that the antifungal activity of CSEO against fluconazole-resistant C. albicans was better than that of its main components (sabinene and 4-terpineol). To further investigate the inhibitory mechanism, the transcriptional responses of C. albicans to CSEO, sabinene, and 4-terpineol treatment were determined based on RNA-seq. The Venn diagram and clustering analysis pattern of differential expression genes showed the mechanism of CSEO and 4-terpineol’s anti-C. albicans activity might be similar from the perspective of the genes. Functional enrichment analysis suggested that CSEO regulated adherence-, hyphae-, and biofilm-formation-related genes, which may be CSEO’s active mechanism of inhibiting the growth of fluconazole-resistant C. albicans. Overall, we preliminarily revealed the molecular mechanism between the chemical components and the antifungal activity of CSEO against C. albicans. This study provides new insights to overcome the azole resistance of C. albicans and promote the development and application of C. lansium (Lour.) Skeels seeds.
Cytotoxic Indole Diterpenoids from a Sphagneticola trilobata-Derived Fungus Aspergillus sp. PQJ-1
Two new indole diterpene derivatives, 5S-hydroxy-β-aflatrem (1) and 14R-hydroxy-β-aflatrem (2), along with one known analogue, 14-(N,N-dimethl-L-valyloxy)paspalinine (3), were isolated from the fermentation broth of the fungus Aspergillus sp. PQJ-1 derived from Sphagneticola trilobata. The structures of the new compounds were elucidated from spectroscopic data and ECD spectroscopic analyses. All the compounds (1–3) were evaluated for their cytotoxicity against A549, Hela, Hep G2, and MCF-7 cell lines. Compounds 1 and 2 exhibited selective inhibition against Hela cells. Further studies showed that 1 significantly induced apoptosis and suppressed migration and invasion in Hela cells. Moreover, 1 could up-regulate pro-apoptotic genes BAX and Caspase-3 and down-regulate anti-apoptotic genes Bcl-xL and XIXP.
In-Depth Insight into the Ag/CNQDs/g-C3N4 Photocatalytic Degradation of Typical Antibiotics: Influence Factor, Mechanism and Toxicity Evaluation of Intermediates
In this paper, the photocatalytic degradation efficiency of typical antibiotics (norfloxacin (NOR), sulfamethoxazole (SMX) and tetracycline hydrochloride (TCH)) by Ag/CNQDs/g-C3N4 under visible light irradiation was studied. Various strategies were applied to characterize the morphology, structure and photochemical properties of the Ag/CNQDs/g-C3N4 composites. The superior photocatalytic activity of Ag/CNQDs/g-C3N4 was attributed to the wide light response range and the enhancement of interfacial charge transfer. At the same time, the effect of the influence factors (pH, Humic acid (HA) and coexisting ions) on the antibiotics degradation were also investigated. Furthermore, the electron spin resonance (ESR) technology, free radical quenching experiments, LC/MS and DFT theoretical calculations were applied to predict and identify the active groups and intermediates during the photocatalytic degradation process. In addition, Ag/CNQDs/g-C3N4 exhibited the obvious antibacterial effect to Escherichia coli due to the addition of Ag NPs. This study develops a new way for the removal of emerging antibiotic pollution from wastewaters.
Enhancing fresh-cut spinach preservation with carbon quantum dot-based composite coatings
In order to address the issue of fresh-cut vegetable waste, this research was done on postharvest preservation techniques using carbon dots (CDs) and sericin protein (SC) composite coatings (SCCD). SCCD was synthesized using ultrasound technology, exhibiting promising antioxidant and antibacterial activities. The influence of CDs concentration variations on the morphological, fluorescence quenching, UV-shielding, and structural properties of SCCD was comprehensively investigated. Protein quenching caused by endogenous fluorescence was lessened by the interaction of SC and CDs. The inhibition zones grew from 7.8 to 19.21 mm and 20.01 mm, respectively, and the antibacterial activity of SCCD-1.0 rose by 146% (for B. subtilis ) and 157% (for E. coli ) in comparison to the SC. Additionally, the SCCD composite coating successfully delayed colonies expansion, preserved spinach flavor, decreased the fresh-cut spinach’s weight loss rate and malondialdehyde concentration in the storage experiment by 41.67% and 42.11%, respectively. These findings support the SCCD composite coating’s potential as an active food packaging material.
Design, Synthesis, and Anti-Hepatocellular Carcinoma Evaluation of Sesquiterpene Lactone Epimers Trilobolide-6-O-isobutyrate Analogs
Hepatocellular carcinoma (HCC), one of the most common malignant cancers with a low 5-year survival rate, is the third leading cause of cancer-related deaths worldwide. The finding of novel agents and strategies for the treatment of HCC is an urgent need. Sesquiterpene lactones (SLs) have attracted extensive attention because of their potent antitumor activity. In this study, a new series of SL derivatives (3–18) were synthesized using epimers 1 and 2 as parent molecules, isolated from Sphagneticola trilobata, and evaluated for their anti-HCC activity. Furthermore, the structures of 4, 6, and 14 were confirmed by X-ray single-crystal diffraction analyses. The cytotoxic activities of 3–18 on two HCC cell lines, including HepG2 and Huh7, were evaluated using the CCK-8 assay. Among them, compound 10 exhibited the best activity against the HepG2 and Huh7 cell lines. Further studies showed that 10 induced cell apoptosis, arrested the cell cycle at the S phase, and induced the inhibition of cell proliferation and migration in HepG2 and Huh7. In addition, absorption, distribution, metabolism, and excretion (ADME) properties prediction showed that 10 may possess the properties to be a drug candidate. Thus, 10 may be a promising lead compound for the treatment of HCC.
Diversity and structure of the root-associated bacterial microbiomes of four mangrove tree species, revealed by high-throughput sequencing
Background Root-associated microbes of the mangrove trees play important roles in protecting and maintaining mangrove ecosystems. At present, most of our understanding of mangrove root-related microbial diversity is obtained from specific mangrove species in selected geographic regions. Relatively little is known about the composition of the bacterial microbiota existing in disparate mangrove species microenvironments, particularly the relationship among different mangrove species in tropical environments. Methods We collected the root, rhizosphere soil, and non-rhizosphere soil of four mangrove trees (Acanthus ilicifolius, Bruguiera gymnorrhiza, Clerodendrum inerme, and Lumnitzera racemosa) and detected the 16S rRNA gene by a conventional PCR. We performed high throughput sequencing using Illumina Novaseq 6000 platform (2x250 paired ends) to investigate the bacterial communities related with the different mangrove species. Results We analyzed the bacterial diversity and composition related to the diverse ecological niches of mangrove species. Our data confirmed distinct distribution patterns of bacterial communities in the three rhizocompartments of the four mangrove species. Microbiome composition varied with compartments and host mangrove species. The bacterial communities between the endosphere and the other two compartments were distinctly diverse independent of mangrove species. The large degree of overlap in critical community members of the same rhizocompartment across distinct mangrove species was found at the phylum level. Furthermore, this is the first report of Acidothermus found in mangrove environments. In conclusion, understanding the complicated host-microbe associations in different mangrove species could lay the foundation for the exploitation of the microbial resource and the production of secondary metabolites.
Spatial heterogeneity and temporal dynamics of mosquito population density and community structure in Hainan Island, China
Background Mosquitoes are vectors of many tropical diseases. Understanding the ecology of local mosquito vectors, such as species composition, distributions, population dynamics, and species diversity is important for designing the optimal strategy to control the mosquito-borne diseases. Methods Entomological surveillance of adult mosquitoes was conducted in five sites representing different ecological settings across Hainan Island from January to December of 2018 using BG Sentinel (BGS) traps and Centers for Disease Prevention and Control (CDC) light traps. In each site, we selected three areas representing urban, suburban and rural settings. Eighteen trap-days were sampled in each setting at each site, and CDC light traps and BGS traps were setup simultaneously. Mosquito species composition, distribution, population dynamics, and species diversity were analyzed. Mosquito densities were compared between different study sites and between different settings. Results Nine species of mosquitoes belonging to four genera were identified. Culex quinquefasciatus (80.8%), Armigeres subalbatus (13.0%) and Anopheles sinensis (3.1%) were the top three species collected by CDC light traps; Cx. quinquefasciatus (91.9%), Ae. albopictus (5.1%), and Ar. subalbatus (2.8%) were the top three species collected by BGS traps. Predominant species varied among study sites. The population dynamics of Ae. albopictus , An. sinensis and Cx. quinquefasciatus showed clear seasonal variation regardless of study sites with a varied peak season for different species. Mosquito abundance of all species showed significant differences among different study sites and among urban, suburban and rural areas. Danzhou had the highest mosquito biodiversity, with an α, β, and Gini-Simpson biodiversity index of 8, 1.13 and 0.42, respectively. BGS traps captured Aedes mosquito at a higher efficiency than CDC light traps, whereas CDC light traps captured significantly more Anopheles and Armigeres mosquitoes than BGS traps. Conclusions Mosquitoes were abundant on Hainan Island with clear seasonality and spatial heterogeneity. Population density, species composition, distribution, and species diversity were strongly affected by the natural environment. Different tools are required for the surveillance of different mosquito species.