Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
14 result(s) for "Yi, Kiho"
Sort by:
Friction Anisotropy—Driven Domain Imaging on Exfoliated Monolayer Graphene
Graphene produced by exfoliation has not been able to provide an ideal graphene with performance comparable to that predicted by theory, and structural and/or electronic defects have been proposed as one cause of reduced performance. We report the observation of domains on exfoliated monolayer graphene that differ by their friction characteristics, as measured by friction force microscopy. Angle-dependent scanning revealed friction anisotropy with a periodicity of 180° on each friction domain. The friction anisotropy decreased as the applied load increased. We propose that the domains arise from ripple distortions that give rise to anisotropic friction in each domain as a result of the anisotropic puckering of the graphene.
Assessment of Anti-Inflammatory and Antioxidant Effects of Citrus unshiu Peel (CUP) Flavonoids on LPS-Stimulated RAW 264.7 Cells
Citrus unshiu is a popular medicinal herb in several Asian countries, in particular South Korea. C. unshiu peel (CUP) has several biologically active compounds, including flavonoids. Hence, this research aimed to label the flavonoids from CUP by HPLC-MS/MS analysis and examine their anti-inflammatory and antioxidant potential on LPS-stimulated RAW 264.7 macrophages. A total of four flavonoids (Rutin, naringin, hesperidin, and poncirin) were characterized, and their contents were quantified from CUP. It showed that the naringin is rich in CUP. Further, treatment with the flavonoids at concentrations of 2.5 and 5 μg/mL had no effect on the cell viability of RAW 264.7 macrophages. On the other hand, it decreased the production and expression of inflammatory mediators and pro-inflammatory cytokines such as NO, PGE2, TNF-α, IL-1β, iNOS, and COX2 in the LPS-stimulated RAW 264.7 macrophages. In addition, flavonoids treatment inhibited the NF-κB activation by downregulating the p-p65 and p-IκBα proteins expression. Furthermore, reactive oxygen species (ROS) production considerably decreased at the same concentrations while antioxidant enzyme activity increased in the LPS-stimulated RAW 264.7 macrophages. Collectively, our results show that CUP flavonoids have the potential to decrease inflammation and oxidative damage.
Association of Increased Hair Calcium Levels and Enhanced Augmentation Index (AIx): a Marker of Arterial Stiffness
Arterial stiffness is involved in the pathophysiology of cardiovascular disease, and the degree of arterial stiffness is associated with the extent of vascular calcification. This study aimed to investigate the association of hair calcium levels with augmentation index (AIx), a simple, non-invasive measurement for arterial stiffness. Healthy Koreans (male, n = 34, female, n = 70) were enrolled in this study. Anthropometric parameters, lipid profiles, fasting glucose, hair mineral levels, and AIx were measured. Pearson/partial correlations and multivariate linear regression analyses were used to assess the relationship between hair calcium levels and AIx. AIx positively correlated with hair calcium levels (r = 0.275, p = 0.005), age (r = 0.283, p = 0.004), systolic blood pressure (r = 0.282, p = 0.004), low-density lipoprotein (LDL)-cholesterol (r = 0.255, p = 0.009), and hair magnesium (r = 0.196, p = 0.046), and negatively correlated with heart rate (r = -0.563, p < 0.001) and fasting glucose (r = -0.262, p = 0.005). Hair calcium levels significantly correlated with hair magnesium (r = 0.926, p < 0.001). Significant relationship between AIx and hair calcium levels was maintained after adjustment for sex, age, height, hear rate, blood pressure, total cholesterol, LDL-cholesterol, fasting glucose, and hair magnesium (r = 0.244, p = 0.018). Logistic regression model showed that AIx increased with the increment of hair calcium levels; log-AIx increased by 0.403% (95% CI: 0.139-0.515, p = 0.001) per unit change in log-hair calcium level (sex-adjusted). After adjustment for all the variables above together with triglyceride and high-density lipoprotein-cholesterol, increased significance of the association was 0.513% (p = 0.016)]. This study supports the presence of the independent positive relationship between hair calcium levels and AIx. It suggests the possibility that hair calcium levels may be a useful index for reflecting arterial stiffness.
Porcine testicular extract inhibits T cell proliferation by blocking cell cycle transition from G1 phase to S phase
Since T cells express diverse sex steroid hormone receptors, they might be a good model to evaluate the effects of sex steroid hormones on immune modulation. Porcine testicular extract contains several sex steroid hormones and may be useful to study the effects of sex steroid hormones during T cell activation. We have examined the effects of the porcine testicular extract on T cell activation: proliferation and secretion of cytokines (IL-2 and IFN-γ) by activated T cells were severely decreased after treatment with porcine testicular extract. The extract produced an immunosuppressive effect and inhibited the proliferation of activated T cells by blocking the cell cycle transition from the G 1 phase to S phase. These effects were mediated by a decrease in the expression of cyclin D1 and cyclin E and constitutive expression of p27 KIP1 after T cell activation.
Effect of Saururus chinensis leaves extract on type II collagen-induced arthritis mouse model
Background Saururus chinensis leaves have been used as traditional medicine in Korea for pain, intoxication, edema, and furuncle. According to previous reports, these leaves exert renoprotective, neuroprotective, and antioxidant effects by attenuating inflammatory responses. However, the beneficial effect of Saururus chinensis leaves on arthritis has not been elucidated. Thus, we evaluated the water extract of Saururus chinensis leaves (SHW) using type II collagen-induced arthritis (CIA) mice models. Methods Quantitative analysis of major components from SHW was performed by HPLC. Arthritis was induced by injection of type II collagen. Each group was orally administered SHW (100 mg/kg and 500 mg/kg). Methotrexate (MTX) was used as a positive control. Serum levels of interleukin-6, TNF-alpha, and type II collagen IgG in the animal models were measured using ELISA. Histological features were observed by H&E staining. Results Quantitative analysis of SHW showed the contents as 56.4 ± 0.52 mg/g of miquelianin, 7.75 ± 0.08 mg/g of quercetin 3-O-(2”-O-β -glucopyranosyl)-α-rhamnopyranoside, and 3.17 ± 0.02 mg/g of quercitrin. Treatment with 500 mg/kg SHW decreased the serum level of Interleukin-6 (IL-6), TNF-alpha, and collagen IgG in the CIA model. Moreover, SHW treatment diminished the swelling of hind limbs and monocyte infiltration in blood vessels in CIA animal models. The results indicate that SHW could decrease CIA-induced arthritis in vivo. Conclusions The results indicate that SHW could be used to improving arthritis by reducing inflammatory factors (IL-6 and TNF-alpha). However, further experiments are required to determine how SHW influences signal transduction in animal models.
Bionic artificial skin with a fully implantable wireless tactile sensory system for wound healing and restoring skin tactile function
Tactile function is essential for human life as it enables us to recognize texture and respond to external stimuli, including potential threats with sharp objects that may result in punctures or lacerations. Severe skin damage caused by severe burns, skin cancer, chemical accidents, and industrial accidents damage the structure of the skin tissue as well as the nerve system, resulting in permanent tactile sensory dysfunction, which significantly impacts an individual’s daily life. Here, we introduce a fully-implantable wireless powered tactile sensory system embedded artificial skin (WTSA), with stable operation, to restore permanently damaged tactile function and promote wound healing for regenerating severely damaged skin. The fabricated WTSA facilitates (i) replacement of severely damaged tactile sensory with broad biocompatibility, (ii) promoting of skin wound healing and regeneration through collagen and fibrin-based artificial skin (CFAS), and (iii) minimization of foreign body reaction via hydrogel coating on neural interface electrodes. Furthermore, the WTSA shows a stable operation as a sensory system as evidenced by the quantitative analysis of leg movement angle and electromyogram (EMG) signals in response to varying intensities of applied pressures. Although artificial skins can facilitate the healing of damaged skin, the restoration of tactile functions remain a challenge. Here, Kang et al. report an artificial skin with an implantable tactile sensor that can simultaneously replace the tactile function by nerve stimulation and promote skin regeneration.
Edge‐Site‐Free and Topological‐Defect‐Rich Carbon Cathode for High‐Performance Lithium‐Oxygen Batteries
The rational design of a stable and catalytic carbon cathode is crucial for the development of rechargeable lithium‐oxygen (LiO2) batteries. An edge‐site‐free and topological‐defect‐rich graphene‐based material is proposed as a pure carbon cathode that drastically improves LiO2 battery performance, even in the absence of extra catalysts and mediators. The proposed graphene‐based material is synthesized using the advanced template technique coupled with high‐temperature annealing at 1800 °C. The material possesses an edge‐site‐free framework and mesoporosity, which is crucial to achieve excellent electrochemical stability and an ultra‐large capacity (>6700 mAh g−1). Moreover, both experimental and theoretical structural characterization demonstrates the presence of a significant number of topological defects, which are non‐hexagonal carbon rings in the graphene framework. In situ isotopic electrochemical mass spectrometry and theoretical calculations reveal the unique catalysis of topological defects in the formation of amorphous Li2O2, which may be decomposed at low potential (∼ 3.6 V versus Li/Li+) and leads to improved cycle performance. Furthermore, a flexible electrode sheet that excludes organic binders exhibits an extremely long lifetime of up to 307 cycles (>1535 h), in the absence of solid or soluble catalysts. These findings may be used to design robust carbon cathodes for LiO2 batteries. An edge‐site‐free and topological‐defect‐rich graphene mesosponge (GMS) is proposed as a carbon cathode for lithium‐oxygenbatteries. The GMS is highly stable, with high discharge capacity, low charge plateau and enhanced electrochemical stability compared to other commercial carbon materials. The table of contents image shows the formation of easily‐decomposable Li2O2 at the topological defects on GMS.
Inhibitory effect of 4-O-methylhonokiol on lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment via inhibition of nuclear factor-kappaB in vitro and in vivo models
Background Neuroinflammation is important in the pathogenesis and progression of Alzheimer disease (AD). Previously, we demonstrated that lipopolysaccharide (LPS)-induced neuroinflammation caused memory impairments. In the present study, we investigated the possible preventive effects of 4- O -methylhonokiol, a constituent of Magnolia officinalis , on memory deficiency caused by LPS, along with the underlying mechanisms. Methods We investigated whether 4- O -methylhonokiol (0.5 and 1 mg/kg in 0.05% ethanol) prevents memory dysfunction and amyloidogenesis on AD model mice by intraperitoneal LPS (250 μg/kg daily 7 times) injection. In addition, LPS-treated cultured astrocytes and microglial BV-2 cells were investigated for anti-neuroinflammatory and anti-amyloidogenic effect of 4- O -methylhonkiol (0.5, 1 and 2 μM). Results Oral administration of 4- O -methylhonokiol ameliorated LPS-induced memory impairment in a dose-dependent manner. In addition, 4- O -methylhonokiol prevented the LPS-induced expression of inflammatory proteins; inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as activation of astrocytes (expression of glial fibrillary acidic protein; GFAP) in the brain. In in vitro study, we also found that 4- O -methylhonokiol suppressed the expression of iNOS and COX-2 as well as the production of reactive oxygen species, nitric oxide, prostaglandin E 2 , tumor necrosis factor-α, and interleukin-1β in the LPS-stimulated cultured astrocytes. 4- O -methylhonokiol also inhibited transcriptional and DNA binding activity of NF-κB via inhibition of IκB degradation as well as p50 and p65 translocation into nucleus of the brain and cultured astrocytes. Consistent with the inhibitory effect on neuroinflammation, 4- O -methylhonokiol inhibited LPS-induced Aβ 1-42 generation, β- and γ-secretase activities, and expression of amyloid precursor protein (APP), BACE1 and C99 as well as activation of astrocytes and neuronal cell death in the brain, in cultured astrocytes and in microglial BV-2 cells. Conclusion These results suggest that 4- O -methylhonokiol inhibits LPS-induced amyloidogenesis via anti-inflammatory mechanisms. Thus, 4- O -methylhonokiol can be a useful agent against neuroinflammation-associated development or the progression of AD.
MG53 Preserves Neuromuscular Junction Integrity and Alleviates ALS Disease Progression
Respiratory failure from progressive respiratory muscle weakness is the most common cause of death in amyotrophic lateral sclerosis (ALS). Defects in neuromuscular junctions (NMJs) and progressive NMJ loss occur at early stages, thus stabilizing and preserving NMJs represents a potential therapeutic strategy to slow ALS disease progression. Here we demonstrate that NMJ damage is repaired by MG53, an intrinsic muscle protein involved in plasma membrane repair. Compromised diaphragm muscle membrane repair and NMJ integrity are early pathological events in ALS. Diaphragm muscles from ALS mouse models show increased susceptibility to injury and intracellular MG53 aggregation, which is also a hallmark of human muscle samples from ALS patients. We show that systemic administration of recombinant human MG53 protein in ALS mice protects against injury to diaphragm muscle, preserves NMJ integrity, and slows ALS disease progression. As MG53 is present in circulation in rodents and humans under physiological conditions, our findings provide proof-of-concept data supporting MG53 as a potentially safe and effective therapy to mitigate ALS progression.