Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
83
result(s) for
"Yin, Jiwei"
Sort by:
SSR marker based analysis for identification and of genetic diversity of non-heading Chinese cabbage varieties
2023
As a widely cultivated vegetable in China and Southeast Asia, the breeding of non-heading Chinese cabbage (
Brassica campestris
ssp.
chinensis
Makino) is widespread; more than 400 varieties have been granted new plant variety rights (PVRs) in China. Distinctness is one of the key requirements for the granting of PVRs, and molecular markers are widely used as a robust supplementary method for similar variety selection in the distinctness test. Although many genome-wide molecular markers have been developed, they have not all been well used in variety identification and tests of distinctness of non-heading Chinese cabbage. In this study, by using 423 non-heading Chinese cabbage varieties collected from different regions of China, 287 simple sequence repeat (SSR) markers were screened for polymorphisms, and 23 core markers were finally selected. The polymorphic information content (PIC) values of the 23 SSR markers ranged from 0.555 to 0.911, with an average of 0.693, and the average number of alleles per marker was 13.65. Using these 23 SSR markers, 418 out of 423 varieties could be distinguished, with a discrimination rate of 99.994%. Field tests indicated that those undistinguished varieties were very similar and could be further distinguished by a few morphological characteristics. According to the clustering results, the 423 varieties could be divided into three groups: pak-choi, caitai, and tacai. The similarity coefficient between the SSR markers and morphological characteristics was moderate (0.53), and the efficiency of variety identification was significantly improved by using a combination of SSR markers and morphological characteristics.
Journal Article
High Wind Speed Inversion Model of CYGNSS Sea Surface Data Based on Machine Learning
2021
In response to the deficiency of the detection capability of traditional remote sensing means (scatterometer, microwave radiometer, etc.) for high wind speed above 25 m/s, this paper proposes a GNSS-R technique combined with a machine learning method to invert high wind speed at sea surface. The L1-level satellite-based data from the Cyclone Global Navigation Satellite System (CYGNSS), together with the European Centre for Medium-Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP) data, constitute the original sample set, which is processed and trained with Support Vector Regression (SVR), the combination of Principal Component Analysis (PCA) and SVR (PCA-SVR), and Convolutional Neural Network (CNN) methods, respectively, to finally construct a sea surface high wind speed inversion model. The three models for high wind speed inversion are certified by the test data collected during Typhoon Bavi in 2020. The results show that all three machine learning models can be used for high wind speed inversion on sea surface, among which the CNN method has the highest inversion accuracy with a mean absolute error of 2.71 m/s and a root mean square error of 3.80 m/s. The experimental results largely meet the operational requirements for high wind speed inversion accuracy.
Journal Article
Wind Direction Retrieval Using Support Vector Machine from CYGNSS Sea Surface Data
2021
In view of the difficulty of wind direction retrieval in the case of the large space and time span of the global sea surface, a method of sea surface wind direction retrieval using a support vector machine (SVM) is proposed. This paper uses the space-borne global navigation satellite systems reflected signal (GNSS-R) as the remote sensing signal source. Using the Cyclone Global Navigation Satellite System (CYGNSS) satellite data, this paper selects a variety of feature parameters according to the correlation between the features of the sea surface reflection signal and the wind direction, including the Delay Doppler Map (DDM), corresponding to the CYGNSS satellite parameters and geometric feature parameters. The Radial Basis Function (RBF) is selected, and parameter optimization is performed through cross-validation based on the grid search method. Finally, the SVM model of sea surface wind direction retrieval is established. The result shows that this method has a high retrieval classification accuracy using the dataset with wind speed greater than 10 m/s, and the root mean square error (RMSE) of the retrieval result is 26.70°.
Journal Article
MicroRNA-143 inhibits tumorigenesis in hepatocellular carcinoma by downregulating GATA6
2017
MicroRNAs serve a critical role in human hepatocellular carcinoma (HCC) progression. However, the exact role of microRNA-143 (miR-143) in HCC remains unclear. The current study investigates the molecular mechanism of miR-143 in HCC. In cultured HepG2 and Bel7402 cell lines, miR-143 levels were raised by lentivirus transduction. This significantly inhibited HCC progression in terms of cell invasion and proliferation in both HepG2 and Bel7402 cell lines (P<0.05). MiR-143 also significantly decreased tumor implantation in vivo (P<0.05). Regulation of miR-143 on its direct target, GATA-binding factor 6 (GATA6), was investigated by multiple strategies, including dual-luciferase assay, quantitative polymerase chain reaction and western blot analysis. The results indicated that miR-143 was downregulated in both HCC cell lines and human tumors. GATA6 was identified as the downstream target of miR-143 in HCC, and overexpressing GATA6 was able to counter the tumor-suppressive effect of miR-143 on HCC in HepG2 and Bel7402 cells by significantly increasing proliferation and invasion rates (P<0.05). Therefore, a novel epigenetic pathway was identified in which miR-143 may suppress the malignancy of HCC by targeting GATA6.
Journal Article
Alternative Forms of Enhanced Boussinesq Equations with Improved Nonlinearity
2013
We propose alternative forms of the Boussinesq equations which extend the equations of Madsen and Schäffer by introducing extra nonlinear terms during enhancement. Theoretical analysis shows that nonlinear characteristics are considerably improved. A numerical implementation of one-dimensional equations is described. Three tests involving strongly nonlinear evolution, namely, regular waves propagating over an elevated bar feature in a tank with an otherwise constant depth, wave group transformation over constant water depth, and nonlinear shoaling of unsteady waves over a sloping beach, are simulated by the model. The model is found to be effective.
Journal Article
Hoarseness due to lymph node metastasis of hepatocellular carcinoma: A case report
2016
Hepatocellular carcinoma (HCC) metastases in the mediastinum are rare, particularly under the arch of the aorta. The present study describes the case of a 30-year-old male patient who presented with back pain and hoarseness for 2 months due to lymph node metastasis of HCC. The patient had undergone right hepatic lobectomy for HCC 2 years prior and received transarterial chemoembolization 4 times following resection. A computed tomography scan revealed enlarged lymph nodes under the arch of the aorta that appeared to have invaded the left recurrent laryngeal nerve, causing the hoarseness. Percutaneous aspiration biopsy of the enlarged, right supraclavicular lymph node identified malignant cells consistent with HCC. Radiation administered as a therapy to treat for the metastatic lymph nodes did not diminish the tumor but relieved the symptoms.
Journal Article
Uniform wurtzite MnSe nanocrystals with surface-dependent magnetic behavior
by
Jie Zhang Fan Zhang Xuebing Zhao Xinran Wang Lifeng Yin Chongyun Liang Min Wang Ying Li Jiwei Liu Qingsong Wu Renchao Che
in
Atomic/Molecular Structure and Spectra
,
Biomedicine
,
Biotechnology
2013
Manganese selenide (MnSe) possesses unique magnetic properties as an important magnetic semiconductor, but the synthesis and properties of MnSe nanocrystals are less developed compared to other semiconductor nanocrystals because of the inability to obtain high-quality MnSe, especially in the metastable wurtzite structure. Here, we have successfully fabricated wurtzite MnSe nanocrystals via a colloidal approach which affords uniform crystal sizes and tailored shapes. The selective binding strength of the amine surfactant is the determining factor in shape-control and shape-evolution. Bullet-shapes could be transformed into shuttle-shapes if part of the oleylamine in the reaction solution was replaced by trioctylamine, and tetrapod-shaped nanocrystals could be formed in trioctylamine systems. The three-dimensional (3D) structure of the bullet-shaped nanorods has been demonstrated by the advanced transmission electron microscope (TEM) 3D-tomography technology. High-resolution TEM (HRTEM) and electron energy-loss spectroscopy (EELS) show that planar-defect structures such as stacking faults and twinning along the [001] direction arise during the growth of bullet-shapes. On the basis of careful HRTEM observations, we propose a "quadra-twin core" growth mechanism for the formation of wurtzite MnSe nanotetrapods. Furthermore, the wurtzite MnSe nanocrystals show low- temperature surface spin-glass behavior due to their noncompensated surface spins and the blocking temperatures increase from 8.4 K to 18.5 K with increasing surface area/volume ratio of the nanocrystals. Our results provide a systematic study of wurtzite MnSe nanocrystals.
Journal Article
MicroRNA-638 inhibits cell proliferation by targeting phospholipase D1 in human gastric carcinoma
by
Zhang, Binbin
,
Feng, Yuyang
,
Bian, Zehua
in
3' Untranslated Regions - genetics
,
Apoptosis - genetics
,
Base Sequence
2015
MicroRNAs (miRNAs) are a type of small non-coding RNAs that are often play important roles in carcinogene- sis, but the carcinogenic mechanism of miRNAs is still unclear. This study will investigate the function and the mechanism of miR-638 in carcinoma (GC). The expres- sion of miR-638 in GC and the DNA copy number of miR- 638 were detected by real-time PCR. The effect of miR-638 on cell proliferation was measured by counting kit-8 assay. Different assays, including bioinformatics algo- rithms (TargetScan and miRanda), luciferase report assay and Western blotting, were used to identify the target gene of miR-638 in GC. The expression of miR-638 target gene in clinical CRC tissues was also validated by immunohistochemical assay. From this research, we found that miR-638 was downregulated in GC tissues compared with corresponding noncancerous tissues (NCTs), and the DNA copy number of miR-638 was lower in GC than NCTs, which may induce the corresponding downregulation of miR-638 in GC. Ectopic expression of miR-638 inhibited GC cell growth in vitro. Subsequently, we identified that PLD1 is the target gene of miR-638 in GC, and silencing PLD1 expression phenocopied the inhibitory effect of miR-638 on GC cell proliferation. Fur- thermore, we observed that PLD1 was overexpressed inGC tissues, and high expression of PLDt in GC predicted poor overall survival. In summary, we revealed that miR- 638 functions as a tumor suppressor in GC through inhibiting PLDI.
Journal Article
Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation
2021
Metal halide perovskite solar cells have demonstrated a high power conversion efficiency (PCE), and further enhancement of the PCE requires a reduction of the bandgap-voltage offset (WOC) and the non-radiative recombination photovoltage loss (ΔVOC,nr). Here, we report an effective approach for reducing the photovoltage loss through the simultaneous passivation of internal bulk defects and dimensionally graded two-dimensional perovskite interface defects. Through this dimensionally graded perovskite formation approach, an open-circuit voltage (VOC) of 1.24 V was obtained with a champion PCE of 21.54% in a 1.63 eV perovskite system (maximum VOC = 1.25 V, WOC = 0.38 V and ΔVOC,nr = 0.10 V); we further decreased the WOC to 0.326 V in a 1.53 eV perovskite system with a VOC of 1.21 V and a PCE of 23.78% (certified 23.09%). This approach is equally effective in achieving a low WOC (ΔVOC,nr) in 1.56 eV and 1.73 eV perovskite solar cell systems, and further leads to the substantially improved operational stability of perovskite solar cells.The use of a dimensionally graded 2D perovskite interface and passivation results in perovskite solar cells with very low photovoltage loss.
Journal Article
Circular RNA hsa_circ_0000277 promotes tumor progression and DDP resistance in esophageal squamous cell carcinoma
by
Zhang, Ruixiang
,
Yan, Ming
,
Cheng, Jiwei
in
Antineoplastic Agents - pharmacology
,
Apoptosis
,
Apoptosis - drug effects
2022
Background
Circular RNAs (circRNAs) are well-known regulators of cancer progression and chemoresistance in various types of cancers. This study was performed to investigate the function of hsa_circ_0000277 in esophageal squamous cell carcinoma (ESCC).
Methods
RNA levels were analyzed via the reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Cell Counting Kit-8 (CCK-8) assay was applied to determine cell proliferation and half maximal inhibitory concentration (IC50) of cisplatin (DDP). Colony formation ability was evaluated by colony formation assay. Cell cycle and apoptosis were measured using flow cytometry. RNA immunoprecipitation (RIP), pull-down assay and dual-luciferase reporter assays were performed for target interaction analysis. The protein levels were determined through western blot. Xenograft models were established for researching hsa_circ_0000277 function in vivo.
Results
Hsa_circ_0000277 expression was increased in ESCC cells and tissues, and it had important clinical significance. Downregulation of hsa_circ_0000277 repressed ESCC cell proliferation, colony formation, cell cycle, and DDP resistance. Hsa_circ_0000277 acted as a microRNA-873-5p (miR-873-5p) sponge and Sry-related high-mobility group box 4 (SOX4) was validated as a target of miR-873-5p. Moreover, hsa_circ_0000277/miR-873-5p axis and miR-873-5p/SOX4 axis regulated ESCC cell progression and DDP resistance. Hsa_circ_0000277/miR-873-5p axis activated SOX4/Wnt/β-catenin signaling pathway.
H
sa_circ_0000277 facilitated tumorigenesis and DDP resistance by miR-873-5p/SOX4 axis in vivo.
Conclusion
These findings unraveled that hsa_circ_0000277 promoted ESCC progression and DDP resistance via miR-873-5p/SOX4/Wnt/β-catenin axis, showing a specific molecular mechanism of carcinogenesis and chemoresistance in ESCC.
Journal Article