Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
188 result(s) for "Yin, Liyan"
Sort by:
Active targeting of orthotopic glioma using biomimetic liposomes co-loaded elemene and cabazitaxel modified by transferritin
Background Effective treatment of glioma requires a nanocarrier that can cross the blood–brain barrier (BBB) to target the tumor lesion. In the current study, elemene (ELE) and cabazitaxel (CTX) liposomes were prepared by conjugating liposomes with transferrin (Tf) and embedding the cell membrane proteins of RG2 glioma cells into liposomes (active-targeting biomimetic liposomes, Tf-ELE/CTX@BLIP), which exhibited effective BBB infiltration to target glioma. Results The findings showed that Tf-ELE/CTX@BLIP was highly stable. The liposomes exhibited highly significant homologous targeting and immune evasion in vitro and a 5.83-fold intake rate compared with classical liposome (ELE/CTX@LIP). Bioluminescence imaging showed increased drug accumulation in the brain and increased tumor penetration of Tf-ELE/CTX@BLIP in orthotopic glioma model nude mice. Findings from in vivo studies indicated that the antitumor effect of the Tf-ELE/CTX@BLIP led to increased survival time and decreased tumor volume in mice. The average tumor fluorescence intensity after intravenous administration of Tf-ELE/CTX@BLIP was 65.2, 12.5, 22.1, 6.6, 2.6, 1.5 times less compared with that of the control, CTX solution, ELE solution, ELE/CTX@LIP, ELE/CTX@BLIP, Tf-ELE/CTX@LIP groups, respectively. Histopathological analysis showed that Tf-ELE/CTX@BLIP were less toxic compared with administration of the CTX solution. Conclusion These findings indicate that the active-targeting biomimetic liposome, Tf-ELE/CTX@BLIP, is a promising nanoplatform for delivery of drugs to gliomas. Graphic Abstract
Radio Frequency Database Construction and Modulation Recognition in Wireless Sensor Networks
Current modulation recognition methods in wireless sensor networks rely too much on simulation datasets. Its practical application effect cannot reach the expected results. To address this issue, in this paper we collect a large amount of real-world wireless signal data based on the software radio device USRP 2920. We then propose a real radio frequency (RF) database architecture and preprocessing operators to manage real-world wireless signal data, conduct signal preprocessing, and export the dataset. Based on different feature datasets derived from the RF database, we propose a multidimensional feature hybrid network (MFHN), which is used to identify unknown signals by analyzing different kinds of signal features. Further, we improve MFHN and design a multifeatured joint migration network (MJMN) to identify small-sample targets. The experimental results show that the recognition rates for unknown target signals of the MFHN and MJMN are 82.7% and 93.2%, respectively. The proposed methods improve the recognition performance in the single node of wireless sensor networks in complex electromagnetic environments, which provides reference for subsequent decision fusion.
Effects of Silver Nanoparticle Exposure on Germination and Early Growth of Eleven Wetland Plants
The increasing commercial production of engineered nanoparticles (ENPs) has led to concerns over the potential adverse impacts of these ENPs on biota in natural environments. Silver nanoparticles (AgNPs) are one of the most widely used ENPs and are expected to enter natural ecosystems. Here we examined the effects of AgNPs on germination and growth of eleven species of common wetland plants. We examined plant responses to AgNP exposure in simple pure culture experiments (direct exposure) and for seeds planted in homogenized field soils in a greenhouse experiment (soil exposure). We compared the effects of two AgNPs-20-nm polyvinylpyrrolidine-coated silver nanoparticles (PVP-AgNPs) and 6-nm gum arabic coated silver nanoparticles (GA-AgNPs)-to the effects of AgNO(3) exposure added at equivalent Ag concentrations (1, 10 or 40 mg Ag L(-1)). In the direct exposure experiments, PVP-AgNP had no effect on germination while 40 mg Ag L(-1) GA-AgNP exposure significantly reduced the germination rate of three species and enhanced the germination rate of one species. In contrast, 40 mg Ag L(-1) AgNO(3) enhanced the germination rate of five species. In general root growth was much more affected by Ag exposure than was leaf growth. The magnitude of inhibition was always greater for GA-AgNPs than for AgNO(3) and PVP-AgNPs. In the soil exposure experiment, germination effects were less pronounced. The plant growth response differed by taxa with Lolium multiflorum growing more rapidly under both AgNO(3) and GA-AgNP exposures and all other taxa having significantly reduced growth under GA-AgNP exposure. AgNO(3) did not reduce the growth of any species while PVP-AgNPs significantly inhibited the growth of only one species. Our findings suggest important new avenues of research for understanding the fate and transport of NPs in natural media, the interactions between NPs and plants, and indirect and direct effects of NPs in mixed plant communities.
Vitamin D supplementation in individuals with type 1 diabetes mellitus (T1DM): a systematic review and meta-analysis focusing on pediatrics
Backgrounds Type 1 diabetes mellitus (T1DM) is a significant global health concern, particularly among pediatric populations. Emerging evidence suggests that vitamin D supplementation may support glycemic control in individuals with T1DM; however, existing findings are inconsistent, underscoring the need for further investigation. Methods A comprehensive search of PubMed, Scopus, Cochrane Central, and Web of Science was conducted up to January 2024 to identify relevant English-language randomized controlled trials (RCTs). Risk of bias (ROB) was assessed using the ROB-2 tool. A random-effects model was employed for the meta-analysis using Stata version 17. Results From 2,744 records screened, twelve RCTs including 485 participants with T1DM were included. Vitamin D supplementation did not significantly impact HbA1c levels (-1.60 [-3.78, 0.57]; I² = 98.07%) but was associated with significant reductions in C-peptide levels (-2.54 [-4.97, -0.11]; I² = 97.03%), fasting blood sugar (FBS) (-1.44 [-2.67, -0.22]; I² = 91.10%), and daily insulin requirements (-0.44 [-0.82, -0.06]; I² = 58.64%). Moreover, 25(OH)D concentrations significantly increased following supplementation (4.19 [3.26, 5.13]; I² = 82.85%). No serious adverse events were reported, supporting the safety of supplementation. Conclusion Vitamin D supplementation showed potential benefits in reducing insulin requirements and fasting blood glucose in pediatric T1DM populations. However, its effect on HbA1c remains inconclusive, and the observed reduction in C-peptide levels requires cautious interpretation due to high heterogeneity and possible confounding factors. The certainty of evidence for all outcomes was rated as “low” to “very low” per GRADE assessment. Further large-scale, long-term RCTs are warranted.
Recent Advances in Understanding the Mechanisms of Elemene in Reversing Drug Resistance in Tumor Cells: A Review
Malignant tumors are life-threatening, and chemotherapy is one of the common treatment methods. However, there are often many factors that contribute to the failure of chemotherapy. The multidrug resistance of cancer cells during chemotherapy has been reported, since tumor cells’ sensitivity decreases over time. To overcome these problems, extensive studies have been conducted to reverse drug resistance in tumor cells. Elemene, an extract of the natural drug Curcuma wenyujin, has been found to reverse drug resistance and sensitize cancer cells to chemotherapy. Mechanisms by which elemene reverses tumor resistance include inhibiting the efflux of ATP binding cassette subfamily B member 1(ABCB1) transporter, reducing the transmission of exosomes, inducing apoptosis and autophagy, regulating the expression of key genes and proteins in various signaling pathways, blocking the cell cycle, inhibiting stemness, epithelial–mesenchymal transition, and so on. In this paper, the mechanisms of elemene’s reversal of drug resistance are comprehensively reviewed.
Cabazitaxel-loaded human serum albumin nanoparticles combined with TGFβ-1 siRNA lipid nanoparticles for the treatment of paclitaxel-resistant non-small cell lung cancer
BackgroundIn the current treatment of non-small cell lung cancer (NSCLC), traditional chemotherapy causes high toxicity, so it is necessary to develop safe chemical drug delivery vehicles clinically. Chemotherapy monotherapy is prone to drug resistance. Chemotherapy combined with other therapies such as nucleic acid drugs is an effective way to avoid drug resistance and the toxicity of continuous chemotherapy. In this study, chemotherapy and siRNA therapy were combined to treat paclitaxel-resistant NSCLC in order to increase efficacy and reduce toxicity. This study aims to develop a cabazitaxel-loaded human serum albumin nanoparticles (CTX-HSA-NPs) to improve the toxicity of traditional CTX-Tween 80 and increase targeting, and to develop a TGFβ-1 siRNA lipid Nanoparticles (TGFβ-1 siRNA LNP) combined with chemotherapy in the treatment of paclitaxel-resistant NSCLC.ResultsThis study prepared CTX-HSA-NPs and TGFβ-1 siRNA LNP had small particle size, high encapsulation efficiency (EE). CTX-HSA-NPs lyophilized powder has high stability after dissolved. The antitumor effect of CTX-HSA-NPs on paclitaxel-resistant NSCLC was higher than that of CTX-Tween, and the toxicity was 1.8 times lower than that of CTX-Tween. More importantly, the combined treatment of TGFβ-1 siRNA LNP and CTX-HSA-NPs could effectively improve the antitumor efficacy of paclitaxel-resistant NSCLC in vivo and in vitro. The results of tumor immunohistochemistry showed that TGFβ-1 siRNA LNP significantly inhibited the expression of TGFβ-1, and compared with other groups, the expression of P-gp after low-dose CTX-HSA-NPs treatment was lower, which did not cause obvious drug resistance.ConclusionsThe antitumor effect of CTX-HSA-NPs on paclitaxel-resistant NSCLC was higher than that of CTX-Tween, and the toxicity was lower than that of CTX-Tween. TGFβ-1 siRNA LNP can treat paclitaxel-resistant NSCLC by inhibiting the express of TGFβ-1 mRNA. The combined treatment of TGFβ-1 siRNA LNP and CTX-HSA-NPs could effectively improve the antitumor efficacy of paclitaxel-resistant NSCLC. A combination therapy of chemotherapy and nucleic acid drugs could be an effective approach for treating paclitaxel-resistant NSCLC.
A novel hybrid network of fusing rhythmic and morphological features for atrial fibrillation detection on mobile ECG signals
Atrial fibrillation (AF) is one of the most common arrhythmia diseases, the incidence of which is ascendant with age increase. What’s more, AF is a high-risk factor for stroke, ischemia myocardial and other malignant cardiovascular diseases, which would threaten people’s life significantly. Using a mobile device to screen AF segments is an effective way to reduce the mortality and morbidity of malignant cardiovascular diseases. However, most of existing AF detection methods mainly centered on clinical resting ECG signals and were incapable of processing mobile ECG signals with low signal-to-noise ratio which collected by mobile devices. In this paper, we take advantage of a fully convolutional network variant named U-Net for heart rhythmic information capturing by locating R peak positions as well as calculating RR intervals and a 34-layer residual network for waveform morphological features capturing from ECG signals. Combining both rhythmic information and waveform morphological features, two-layer fully connected networks are employed successively to discriminate AF, normal sinus rhythm , and other abnormal rhythm (other). The extensive experimental results show that our proposed AF our proposed AF screening framework named FRM-CNN can achieve F 1 value of 85.08 ± 0.99% and accuracy of 87.22 ± 0.71 % on identifying AF segments well without handcraft engineering. Compared with the cutting-edge AF detection methods, the FRM-CNN has more superior performance on monitoring people’s health conditions with mobile devices.
Biochemical and biophysical CO2 concentrating mechanisms in two species of freshwater macrophyte within the genus Ottelia (Hydrocharitaceae)
Two freshwater macrophytes, Ottelia alismoides and O. acuminata , were grown at low (mean 5 μmol L −1 ) and high (mean 400 μmol L −1 ) CO 2 concentrations under natural conditions. The ratio of PEPC to RuBisCO activity was 1.8 in O. acuminata in both treatments. In O. alismoides , this ratio was 2.8 and 5.9 when grown at high and low CO 2 , respectively, as a result of a twofold increase in PEPC activity. The activity of PPDK was similar to, and changed with, PEPC (1.9-fold change). The activity of the decarboxylating NADP-malic enzyme (ME) was very low in both species, while NAD-ME activity was high and increased with PEPC activity in O. alismoides . These results suggest that O. alismoides might perform a type of C 4 metabolism with NAD-ME decarboxylation, despite lacking Kranz anatomy. The C 4 -activity was still present at high CO 2 suggesting that it could be constitutive. O. alismoides at low CO 2 showed diel acidity variation of up to 34 μequiv g −1 FW indicating that it may also operate a form of crassulacean acid metabolism (CAM). pH-drift experiments showed that both species were able to use bicarbonate. In O. acuminata , the kinetics of carbon uptake were altered by CO 2 growth conditions, unlike in O. alismoides . Thus, the two species appear to regulate their carbon concentrating mechanisms differently in response to changing CO 2 . O. alismoide s is potentially using three different concentrating mechanisms. The Hydrocharitaceae have many species with evidence for C 4 , CAM or some other metabolism involving organic acids, and are worthy of further study.
Low Concentrations of Silver Nanoparticles in Biosolids Cause Adverse Ecosystem Responses under Realistic Field Scenario
A large fraction of engineered nanomaterials in consumer and commercial products will reach natural ecosystems. To date, research on the biological impacts of environmental nanomaterial exposures has largely focused on high-concentration exposures in mechanistic lab studies with single strains of model organisms. These results are difficult to extrapolate to ecosystems, where exposures will likely be at low-concentrations and which are inhabited by a diversity of organisms. Here we show adverse responses of plants and microorganisms in a replicated long-term terrestrial mesocosm field experiment following a single low dose of silver nanoparticles (0.14 mg Ag kg(-1) soil) applied via a likely route of exposure, sewage biosolid application. While total aboveground plant biomass did not differ between treatments receiving biosolids, one plant species, Microstegium vimeneum, had 32 % less biomass in the Slurry+AgNP treatment relative to the Slurry only treatment. Microorganisms were also affected by AgNP treatment, which gave a significantly different community composition of bacteria in the Slurry+AgNPs as opposed to the Slurry treatment one day after addition as analyzed by T-RFLP analysis of 16S-rRNA genes. After eight days, N2O flux was 4.5 fold higher in the Slurry+AgNPs treatment than the Slurry treatment. After fifty days, community composition and N2O flux of the Slurry+AgNPs treatment converged with the Slurry. However, the soil microbial extracellular enzymes leucine amino peptidase and phosphatase had 52 and 27% lower activities, respectively, while microbial biomass was 35% lower than the Slurry. We also show that the magnitude of these responses was in all cases as large as or larger than the positive control, AgNO3, added at 4-fold the Ag concentration of the silver nanoparticles.
Locating Appropriate Reference Genes in Heteroblastic Plant Ottelia cordata for Quantitative Real-Time PCR Normalization
Selecting the right reference genes for data normalization is the only way to ensure the precision and reproducibility of gene expression measurement using qRT-PCR. Ottelia cordata is a member of the Hydrocharitaceae family in aquatic plants that exhibits both floating and submerged leaf forms. It has recently drawn interest as a possible model plant for research into non-KRANZ C4 photosynthesis and heteroblastic leaves. Our earlier research has demonstrated bias in gene expression analysis when actin or GAPDH, two common reference genes, are used for normalization. Furthermore, there has been no study on the Hydrocharitaceae family reference gene selection published to date. To standardize qRT-PCR in O. cordata, seven genes were chosen from a transcriptome database: ACT7, EF1_α, GAPDH, BRCC36, PP2A, UBC7, and UBQ. We conducted qRT-PCR experiments in various tissues, leaves in different developmental stages, leaves in high/low carbon treatment, and leaves in high/low temperature treatment. After analyzing the stability using five statistical methods (geNorm, normFinder, comparative ΔCt, bestKeeper, and comprehensive analysis), PP2A and UBQ were identified as the most stable genes. BRCC36 was identified as a new reference gene in plants. Finally, by contrasting the expression patterns of pepc2, a crucial gene connected to C4 photosynthesis, in floating and submerged leaves, PP2A, UBQ, and UBC7 were verified. Of these, PP2A and UBQ were shown to be the superior gene for the precise qRT-PCR data normalization. The results of this study offer the initial information concerning reference gene identification for O. cordata as well as the first data in Hydrocharitaceae plants. It will make it easier to do more gene function and molecular biology research on O. cordata and other closely related species.