Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
28
result(s) for
"Yin, Yuejia"
Sort by:
Efficient identification of genomic insertions and surrounding regions in two transgenic maize events using third-generation single-molecule nanopore sequencing technology
2024
The increasing development of new genetically modified organisms underscores the critical need for comprehensive safety assessments, emphasizing the significance of molecular evidence such as gene integration, copy numbers, and adjacent sequences. In this study, the maize nitrate-efficient utilization gene
ZmNRT1.1 A
was introduced into maize variety y822 using transgenic technology, producing transgenic maize events ND4401 and ND4403 with enhanced tolerance to low nitrogen stress. Southern hybridization confirmed that the exogenous T-DNA was singly inserted in both maize transformation events, ND4401 and ND4403. This study utilized third-generation sequencing technology—nanopore single-molecule sequencing—to perform molecular characterization of the integration events. It successfully determined the exogenous gene insertion sites and flanking sequences in ND4401 and ND4403. Comparative analysis with the control group facilitated the preliminary identification of the integration sites of the exogenous T-DNA fragments in these transgenic maize events. Based on the obtained flanking sequences, specific PCR primers were designed for different transformation events. The insertion site for ND4401 was pinpointed in the non-coding region of chromosome 5, and for ND4403, in the non-coding region of chromosome 3. Utilizing the sequencing results, the study developed specific detection primers for the maize transformation events, establishing a precise method for detecting newly created transgenic maize events, which will contribute to subsequent safety assessments.
Journal Article
A Na2CO3-Responsive Chitinase Gene From Leymus chinensis Improve Pathogen Resistance and Saline-Alkali Stress Tolerance in Transgenic Tobacco and Maize
2020
Salinity and microbial pathogens are the major limiting factors for crop production. Although the manipulation of many genes could improve plant performance under either of these stresses, few genes have reported that could improve both pathogen resistance and saline-alkali stress tolerance. In this study, we identified a new chitinase gene CHI TINASE 2 ( LcCHI2 ) that encodes a class II chitinase from Leymus chinensis , which grows naturally on alkaline-sodic soil. Overexpression of LcCHI2 increased chitinase activity in transgenic plants. The transgenic tobacco and maize exhibited improved pathogen resistance and enhanced both neutral salt and alkaline salt stress tolerance. Overexpression of LcCHI2 reduced sodium (Na+) accumulation, malondialdehyde content and relative electrical conductivity in transgenic tobacco under salt stress. In addition, the transgenic tobacco showed diminished lesion against bacterial and fungal pathogen challenge, suggesting an improved disease resistance. Similar improved performance was also observed in LcCHI2 -overexpressed maize under both pathogen and salt stresses. It is worth noting that this genetic manipulation does not impair the growth and yield of transgenic tobacco and maize under normal cultivation condition. Apparently, application of LcCHI2 provides a new train of thought for genetically engineering saline-alkali and pathogen resistant crops of both dicots and monocots.
Journal Article
Analysis of Profit Points for XiaoTie Shared Intelligent Storage Cabinets
2024
The emergence of lockers has provided convenience for the public, but the rapid development of the Internet has greatly improved the quality of life of the masses, and people are no longer satisfied with the services provided by ordinary lockers. With the rapid development of logistics and express delivery, shared lockers have also come into being, and among many shared locker brands, XiaoTie smart lockers stand out. Although XiaoTie smart lockers are more convenient than ordinary lockers, there are still problems such as a small number of storage cabinets, imperfect storage services, high charges due to the high cost of express lockers, insufficient security and high competitive pressure. In order to enhance the competitiveness of the XiaoTie brand, strengthen the professional ability of XiaoTie smart lockers, and ultimately aim to improve the revenue and market share of XiaoTie smart lockers, this paper puts forward targeted suggestions such as broadening financing channels, developing business models, and cultivating professional talents.
Journal Article
Engineered chimeric insecticidal crystalline protein improves resistance to lepidopteran insects in rice (Oryza sativa L.) and maize (Zea mays L.)
2022
The insecticidal crystalline proteins (Crys) are a family of insect endotoxin functioning in crop protection. As insects keep evolving into tolerance to the existing Crys, it is necessary to discover new Cry proteins to overcome potential threatens. Crys possess three functional domains at their N-termini, and the most active region throughout evolution was found at the domain-III. We swapped domain-IIIs from various Cry proteins and generated seven chimeric proteins. All recombinants were expressed in
Escherichia coli
and their toxicity was assessed by dietary exposure assays. Three of the seven Crys exhibited a high toxicity to Asian corn borer over the controls. One of them, Cry1Ab-Gc, a chimeric Cry1Ab being replaced with the domain-III of Cry1Gc, showed the highest toxicity to rice stem borer when it was over-expressed in
Oryza sativa
. Furthermore, it was also transformed into maize, backcrossed into commercial maize inbred lines and then produced hybrid to evaluate their commercial value. Transgenic maize performed significant resistance to the Asian corn borer without affecting the yield. We further showed that this new protein did not have adverse effects on the environment. Our results indicated that domain III swapped of Crys could be used as an efficient method for developing new engineered insecticidal protein.
Journal Article
LcTprxII Overexpression Enhances Physiological and Biochemical Effects in Maize Under Alkaline (Na2CO3) Stress
2025
Alkaline stress limits crop productivity by causing osmotic and oxidative damage. This study investigated the new gene LcTprxII, a type II peroxiredoxin encoded by Leymus chinensis, and its role in enhancing alkaline stress tolerance in transgenic maize. The gene was cloned, overexpressed, and characterized using RT-PCR, phylogenetic analysis, and motif identification. Transgenic maize lines were generated via Agrobacterium-mediated transformation and subjected to physiological, biochemical, and transcriptomic analyses under alkaline stress. Under alkaline stress, the results revealed that LcTprxII overexpression significantly preserved chlorophyll content, mitigated oxidative damage, and maintained growth compared to wild-type plants, as evidenced by elevated activities of antioxidant enzymes (APX, CAT, SOD, and POD) and reduced malondialdehyde (MDA) content. Transcriptomic profiling identified 3733 differentially expressed genes and the upregulation of ABA and MAPK signaling pathways, highlighting the role of these genes in stress signaling and metabolic adaptation. Hormonal analysis indicated reduced ABA and increased GA levels in the transgenic lines. This study identified WRKY, bHLH, and MYB transcription factors as key regulators activated under alkaline stress, contributing to transcriptional regulation in transgenic maize. Field trials confirmed the agronomic potential of LcTprxII-overexpressing maize, with yield maintained under alkaline conditions. The present study revealed that LcTprxII enhances antioxidant defenses and stress signaling, which trigger tolerance to abiotic stress. Future studies should explore the long-term effects on growth, yield, and molecular interactions under diverse environmental conditions.
Journal Article
Identification and Functional Analysis of the EPF/EPFL Gene Family in Maize (Zea mays L.): Implications for Drought Stress Response
2024
Maize, a vital cereal in global agriculture, faces significant yield challenges due to drought exacerbated by climate change. This study explores the genetic and molecular bases of drought resilience in maize, focusing on the EPF/EPFL gene family known for its role in stomatal regulation. Through a genome-wide analysis across seven grass species, we identified and characterized 16 ZmEPF/EPFL genes in maize. Focusing on their gene structure, expression patterns, and evolutionary relationships. The study integrated genome-wide searches, phylogenetic analysis, gene expression profiling under drought and other abiotic stresses, and qRT-PCR validation to elucidate the functional roles of these genes in drought response. Our results demonstrate that specific ZmEPF/EPFL genes are differentially expressed under varying drought conditions, suggesting their involvement in the plant’s adaptive response to water scarcity. Furthermore, interaction analyses reveal that these genes are linked to key processes such as stomatal development and oxidative stress management. This study provides a comprehensive overview of the ZmEPF/EPFL gene family’s contribution to stomatal development and drought tolerance, offering insights that could guide future breeding strategies for drought-resistant maize varieties.
Journal Article
Exploring the roles of ZmARM gene family in maize development and abiotic stress response
2023
Armadillo (ARM) was a gene family important to plants, with crucial roles in regulating plant growth, development, and stress responses. However, the properties and functions of ARM family members in maize had received limited attention. Therefore, this study employed bioinformatics methods to analyze the structure and evolution of ARM-repeat protein family members in maize. The maize ( Zea mays L.) genome contains 56 ARM genes distributed over 10 chromosomes, and collinearity analysis indicated 12 pairs of linkage between them. Analysis of the physicochemical properties of ARM proteins showed that most of these proteins were acidic and hydrophilic. According to the number and evolutionary analysis of the ARM genes, the ARM genes in maize can be divided into eight subgroups, and the gene structure and conserved motifs showed similar compositions in each group. The findings shed light on the significant roles of 56 ZmARM domain genes in development and abiotic stress, particularly drought stress. RNA-Seq and qRT-PCR analysis revealed that drought stress exerts an influence on specific members of the ZmARM family, such as ZmARM4 , ZmARM12 , ZmARM34 and ZmARM36 . The comprehensive profiling of these genes in the whole genome, combined with expression analysis, establishes a foundation for further exploration of plant gene function in the context of abiotic stress and reproductive development.
Journal Article
Exploring the Roles of TALE Gene Family in Maize Drought Stress Responses
2024
The TALE gene family plays a crucial role in regulating growth, development, and abiotic stress responses in plants. However, limited studies have been conducted on the functions of the ZmTALE gene family in maize under drought stress. This study identified 40 members of the ZmTALE family within the maize genome through Blast comparisons, distributed unevenly across the first nine chromosomes. Intraspecific collinearity analysis revealed 13 linked pairs. By constructing a phylogenetic tree with Arabidopsis AtTALE members as references, maize members were divided into two subfamilies, KNOX and BEL1-Like, with KNOX further divided into three branches (KNOX Class I, KNOX Class II, and KNOX Class III). The gene structure and motifs of ZmTALE genes within the same subfamily or branch showed similarities, as did their encoded proteins, which possess similar motifs and conserved domains. Analysis of the physicochemical properties of the ZmTALE proteins revealed that the proteins encoded by this family are stable. Expression analysis of ZmTALE genes in maize demonstrated their varied roles in development and drought stress regulation, confirmed through qRT-PCR. The identification, characterization, and expression analysis of ZmTALE genes provide a reference for future gene function research and aid in the genetic enhancement of maize to withstand drought stress.
Journal Article
Molecular Dynamics Analysis Reveals Structural Insights into Mechanism of Nicotine N-Demethylation Catalyzed by Tobacco Cytochrome P450 Mono-Oxygenase
2011
CYP82E4, a cytochrome P450 monooxygenase, has nicotine N-demethylase (NND) activity, which mediates the bioconversion of nicotine into nornicotine in senescing tobacco leaves. Nornicotine is a precursor of the carcinogen, tobacco-specific nitrosamine. CYP82E3 is an ortholog of CYP82E4 with 95% sequence identity, but it lacks NND activity. A recent site-directed mutagenesis study revealed that a single amino acid substitution, i.e., cysteine to tryptophan at the 330 position in the middle of protein, restores the NND activity of CYP82E3 entirely. However, the same amino acid change caused the loss of the NND activity of CYP82E4. To determine the mechanism of the functional turnover of the two molecules, four 3D structures, i.e., the two molecules and their corresponding cys-trp mutants were modeled. The resulting structures exhibited that the mutation site is far from the active site, which suggests that no direct interaction occurs between the two sites. Simulation studies in different biological scenarios revealed that the mutation introduces a conformation drift with the largest change at the F-G loop. The dynamics trajectories analysis using principal component analysis and covariance analysis suggests that the single amino acid change causes the opening and closing of the transfer channels of the substrates, products, and water by altering the motion of the F-G and B-C loops. The motion of helix I is also correlated with the motion of both the F-G loop and the B-C loop and; the single amino acid mutation resulted in the curvature of helix I. These results suggest that the single amino acid mutation outside the active site region may have indirectly mediated the flexibility of the F-G and B-C loops through helix I, causing a functional turnover of the P450 monooxygenase.
Journal Article
Genome sequencing reveals evidence of adaptive variation in the genus Zea
2022
Maize is a globally valuable commodity and one of the most extensively studied genetic model organisms. However, we know surprisingly little about the extent and potential utility of the genetic variation found in wild relatives of maize. Here, we characterize a high-density genomic variation map from 744 genomes encompassing maize and all wild taxa of the genus
Zea
, identifying over 70 million single-nucleotide polymorphisms. The variation map reveals evidence of selection within taxa displaying novel adaptations. We focus on adaptive alleles in highland teosinte and temperate maize, highlighting the key role of flowering-time-related pathways in their adaptation. To show the utility of variants in these data, we generate mutant alleles for two flowering-time candidate genes. This work provides an extensive sampling of the genetic diversity of
Zea
, resolving questions on evolution and identifying adaptive variants for direct use in modern breeding.
A high-density genomic variation map from 744 genomes encompassing maize and all wild taxa of the genus
Zea
reveals evidence of adaptive variation and provides a genus-wide resource of genetic diversity in
Zea
.
Journal Article