Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
19 result(s) for "Yinkai, Lei"
Sort by:
Decoupling between Shockley partials and stacking faults strengthens multiprincipal element alloys
Mechanical properties are fundamental to structural materials, where dislocations play a decisive role in describing their mechanical behavior. Although the high-yield stresses of multiprincipal element alloys (MPEAs) have received extensive attention in the last decade, the relation between their mechanistic origins remains elusive. Our multiscale study of density functional theory, atomistic simulations, and high-resolution microscopy shows that the excellent mechanical properties of MPEAs have diverse origins. The strengthening effects through Shockley partials and stacking faults can be decoupled in MPEAs, breaking the conventional wisdom that low stacking fault energies are coupled with wide partial dislocations. This study clarifies the mechanistic origins for the strengthening effects, laying the foundation for physics-informed predictive models for materials design.
Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage
Aqueous electrochemical energy storage devices have attracted significant attention owing to their high safety, low cost and environmental friendliness. However, their applications have been limited by a narrow potential window (∼1.23 V), beyond which the hydrogen and oxygen evolution reactions occur. Here we report the formation of layered Mn 5 O 8 pseudocapacitor electrode material with a well-ordered hydroxylated interphase. A symmetric full cell using such electrodes demonstrates a stable potential window of 3.0 V in an aqueous electrolyte, as well as high energy and power performance, nearly 100% coulombic efficiency and 85% energy efficiency after 25,000 charge–discharge cycles. The interplay between hydroxylated interphase on the surface and the unique bivalence structure of Mn 5 O 8 suppresses the gas evolution reactions, offers a two-electron charge transfer via Mn 2+ /Mn 4+ redox couple, and provides facile pathway for Na-ion transport via intra-/inter-layer defects of Mn 5 O 8 . Rechargeable aqueous electrochemical energy storage is a promising technology but suffers from a narrow potential window. Here the authors report a surface hydroxylated Mn 5 O 8 pseudocapacitor electrode with bivalence structure that expands the potential window to deliver high energy and power performance.
Dislocation nucleation facilitated by atomic segregation
Surface segregation--the enrichment of one element at the surface, relative to the bulk--is ubiquitous to multi-component materials. Using the example of a Cu-Au solid solution, we demonstrate that compositional variations induced by surface segregation are accompanied by misfit strain and the formation of dislocations in the subsurface region via a surface diffusion and trapping process. The resulting chemically ordered surface regions acts as an effective barrier that inhibits subsequent dislocation annihilation at free surfaces. Using dynamic, atomic-scale resolution electron microscopy observations and theory modelling, we show that the dislocations are highly active, and we delineate the specific atomic-scale mechanisms associated with their nucleation, glide, climb, and annihilation at elevated temperatures. These observations provide mechanistic detail of how dislocations nucleate and migrate at heterointerfaces in dissimilar-material systems.
Atomic-scale phase separation induced clustering of solute atoms
Dealloying typically occurs via the chemical dissolution of an alloy component through a corrosion process. In contrast, here we report an atomic-scale nonchemical dealloying process that results in the clustering of solute atoms. We show that the disparity in the adatom–substrate exchange barriers separate Cu adatoms from a Cu–Au mixture, leaving behind a fluid phase enriched with Au adatoms that subsequently aggregate into supported clusters. Using dynamic, atomic-scale electron microscopy observations and theoretical modeling, we delineate the atomic-scale mechanisms associated with the nucleation, rotation and amorphization–crystallization oscillations of the Au clusters. We expect broader applicability of the results because the phase separation process is dictated by the inherent asymmetric adatom-substrate exchange barriers for separating dissimilar atoms in multicomponent materials. Dealloying usually relies on chemical dissolution of an alloy component. By contrast, the authors demonstrate an atomic-scale phase separation process that differs completely from the chemical dealloying mechanism and thus represents a significant departure from the well-known Hume-Rothery rules.
Phase-field framework with constraints and its applications to ductile fracture in polycrystals and fatigue
Modeling of ductile fracture in polycrystalline structures is challenging, since it requires integrated modeling of cracks, crystal plasticity, and grains. Here we extend the typical phase-field framework to the situations with constraints on the order parameters, and formulate two types of phase-field models on ductile fracture. The Type-I model incorporates three sets of order parameters, which describe the distributions of cracks, plastic strain, and grains, respectively. Crystal plasticity is employed within grain interiors accommodated by J2 plasticity at grain boundaries. The applications of the Type-I model to single crystals and bicrystals demonstrate the influences of grain orientations and grain boundaries on crack growth. In the Type-II model, J2 plasticity is assumed for the whole system and grain structures are neglected. Taking advantage of the efficiency of the fast Fourier transform, our Type-II model is employed to study low cycle fatigue. Crack closure and striation-like patterning of plastic strain are observed in the simulations. Crack growth rate is analyzed as a function of the J-integral, and the simulated fatigue life as a function of plastic strain agrees with the Coffin–Manson relation without a priori assumption.
Examination of Solid-Solution Phase Formation Rules for High Entropy Alloys from Atomistic Monte Carlo Simulations
In this study, we used atomistic simulation methods to examine solid-solution phase formation rules for CoCrFeNi high entropy alloy. Using the Monte Carlo simulations based on the modified embedded atom method (MEAM) potentials, we sampled the thermodynamically equilibrium structures of the CoCrFeNi alloy and further predicted that the CoCrFeNi alloy could form a solid solution phase with high configurational entropy of 1.329R at 1373 K. Furthermore, we examined the stability of this solid solution phase of the CoCrFeNi alloy against the well-recognized solid-solution phase formation rules by varying the MEAM potentials and thus tuning the atom size and mixing enthalpy in the alloy. Our simulation results revealed that it required atom size difference effect δ < 0.05 and mixing enthalpy effect −10 kJ/mol < Δ H  ≈ 0 kJ/mol for the modeled CoCrFeNi alloy to remain a single solid solution phase.
Bivalence Mn 5 O 8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage
Aqueous electrochemical energy storage devices have attracted significant attention owing to their high safety, low cost and environmental friendliness. However, their applications have been limited by a narrow potential window (∼1.23 V), beyond which the hydrogen and oxygen evolution reactions occur. Here we report the formation of layered Mn O pseudocapacitor electrode material with a well-ordered hydroxylated interphase. A symmetric full cell using such electrodes demonstrates a stable potential window of 3.0 V in an aqueous electrolyte, as well as high energy and power performance, nearly 100% coulombic efficiency and 85% energy efficiency after 25,000 charge-discharge cycles. The interplay between hydroxylated interphase on the surface and the unique bivalence structure of Mn O suppresses the gas evolution reactions, offers a two-electron charge transfer via Mn /Mn redox couple, and provides facile pathway for Na-ion transport via intra-/inter-layer defects of Mn O .
Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing
The catalytic performance of nanoparticles is primarily determined by the precise nature of the surface and near-surface atomic configurations, which can be tailored by post-synthesis annealing effectively and straightforwardly. Understanding the complete dynamic response of surface structure and chemistry to thermal treatments at the atomic scale is imperative for the rational design of catalyst nanoparticles. Here, by tracking the same individual Pt 3 Co nanoparticles during in situ annealing in a scanning transmission electron microscope, we directly discern five distinct stages of surface elemental rearrangements in Pt 3 Co nanoparticles at the atomic scale: initial random (alloy) elemental distribution; surface platinum-skin-layer formation; nucleation of structurally ordered domains; ordered framework development and, finally, initiation of amorphization. Furthermore, a comprehensive interplay among phase evolution, surface faceting and elemental inter-diffusion is revealed, and supported by atomistic simulations. This work may pave the way towards designing catalysts through post-synthesis annealing for optimized catalytic performance. Post-synthesis annealing can tailor surface configurations of nanoparticles. Here, the authors use in situ aberration-corrected scanning transmission electron microscopy to track the evolution of individual alloyed metal nanoparticles at atomic scale and discern five distinct stages of surface rearrangement.
Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage
Aqueous electrochemical energy storage devices have attracted significant attention owing to their high safety, low cost and environmental friendliness. However, their applications have been limited by a narrow potential window (1/41.23 V), beyond which the hydrogen and oxygen evolution reactions occur. Here we report the formation of layered Mn 5 O 8 pseudocapacitor electrode material with a well-ordered hydroxylated interphase. A symmetric full cell using such electrodes demonstrates a stable potential window of 3.0 V in an aqueous electrolyte, as well as high energy and power performance, nearly 100% coulombic efficiency and 85% energy efficiency after 25,000 charge-discharge cycles. The interplay between hydroxylated interphase on the surface and the unique bivalence structure of Mn 5 O 8 suppresses the gas evolution reactions, offers a two-electron charge transfer via Mn 2+ /Mn 4+ redox couple, and provides facile pathway for Na-ion transport via intra-/inter-layer defects of Mn 5 O 8.
Dislocation nucleation facilitated by atomic segregation
Surface segregation—the enrichment of one element at the surface, relative to the bulk—is ubiquitous to multi-component materials. Using the example of a Cu–Au solid solution, we demonstrate that compositional variations induced by surface segregation are accompanied by misfit strain and the formation of dislocations in the subsurface region via a surface di˙usion and trapping process. The resulting chemically ordered surface regions acts as an e˙ective barrier that inhibits subsequent dislocation annihilation at free surfaces. Using dynamic, atomic-scale resolution electron microscopy observations and theory modelling, we show that the dislocations are highly active, and we delineate the specific atomic-scale mechanisms associated with their nucleation, glide, climb, and annihilation at elevated temperatures. As a result, these observations provide mechanistic detail of how dislocations nucleate and migrate at heterointerfaces in dissimilar-material systems.