Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
119
result(s) for
"Yoder, Anne D."
Sort by:
Patterns of Gut Bacterial Colonization in Three Primate Species
2015
Host fitness is impacted by trillions of bacteria in the gastrointestinal tract that facilitate development and are inextricably tied to life history. During development, microbial colonization primes the gut metabolism and physiology, thereby setting the stage for adult nutrition and health. However, the ecological rules governing microbial succession are poorly understood. In this study, we examined the relationship between host lineage, captive diet, and life stage and gut microbiota characteristics in three primate species (infraorder, Lemuriformes). Fecal samples were collected from captive lemur mothers and their infants, from birth to weaning. Microbial DNA was extracted and the v4 region of 16S rDNA was sequenced on the Illumina platform using protocols from the Earth Microbiome Project. Here, we show that colonization proceeds along different successional trajectories in developing infants from species with differing dietary regimes and ecological profiles: frugivorous (fruit-eating) Varecia variegata, generalist Lemur catta, and folivorous (leaf-eating) Propithecus coquereli. Our analyses reveal community membership and succession patterns consistent with previous studies of human infants, suggesting that lemurs may serve as a useful model of microbial ecology in the primate gut. Each lemur species exhibits distinct species-specific bacterial diversity signatures correlating to life stages and life history traits, implying that gut microbial community assembly primes developing infants at species-specific rates for their respective adult feeding strategies.
Journal Article
Has Vicariance or Dispersal Been the Predominant Biogeographic Force in Madagascar? Only Time Will Tell
by
Nowak, Michael D.
,
Yoder, Anne D.
in
Animal and plant ecology
,
Animal, plant and microbial ecology
,
Biodiversity
2006
Madagascar is one of the world's hottest biodiversity hot spots due to its diverse, endemic, and highly threatened biota. This biota shows a distinct signature of evolution in isolation, both in the high levels of diversity within lineages and in the imbalance of lineages that are represented. For example, chameleon diversity is the highest of any place on Earth, yet there are no salamanders. These biotic enigmas have inspired centuries of speculation relating to the mechanisms by which Madagascar's biota came to reside there. The two most probable causal factors are Gondwanan vicariance and/or Cenozoic dispersal. By reviewing a comprehensive sample of phylogenetic studies of Malagasy biota, we find that the predominant pattern is one of sister group relationships to African taxa. For those studies that include divergence time analysis, we find an overwhelming indication of Cenozoic origins for most Malagasy clades. We conclude that most of the present-day biota of Madagascar is comprised of the descendents of Cenozoic dispersers, predominantly with African origins.
Journal Article
Bamboo Specialists from Two Mammalian Orders (Primates, Carnivora) Share a High Number of Low-Abundance Gut Microbes
by
Yoder, Anne D.
,
Rodrigo, Allen
,
McKenney, Erin A.
in
Abundance
,
Ailuropoda melanoleuca
,
Ailurus fulgens
2018
Bamboo specialization is one of the most extreme examples of convergent herbivory, yet it is unclear how this specific high-fiber diet might selectively shape the composition of the gut microbiome compared to host phylogeny. To address these questions, we used deep sequencing to investigate the nature and comparative impact of phylogenetic and dietary selection for specific gut microbial membership in three bamboo specialists—the bamboo lemur (Hapalemur griseus, Primates: Lemuridae), giant panda (Ailuropoda melanoleuca, Carnivora: Ursidae), and red panda (Ailurus fulgens, Carnivora: Musteloideadae), as well as two phylogenetic controls—the ringtail lemur (Lemur catta) and the Asian black bear (Ursus thibetanus). We detected significantly higher Shannon diversity in the bamboo lemur (10.029) compared to both the giant panda (8.256; p = 0.0001936) and the red panda (6.484; p = 0.0000029). We also detected significantly enriched bacterial taxa that distinguished each species. Our results complement previous work in finding that phylogeny predominantly governs high-level microbiome community structure. However, we also find that 48 low-abundance OTUs are shared among bamboo specialists, compared to only 8 OTUs shared by the bamboo lemur and its sister species, the ringtail lemur (Lemur catta, a generalist). Our results suggest that deep sequencing is necessary to detect low-abundance bacterial OTUs, which may be specifically adapted to a high-fiber diet. These findings provide a more comprehensive framework for understanding the evolution and ecology of the microbiome as well as the host.
Journal Article
Unprecedented female mutation bias in the aye-aye, a highly unusual lemur from Madagascar
2025
Every mammal studied to date has been found to have a male mutation bias: male parents transmit more de novo mutations to offspring than female parents, contributing increasingly more mutations with age. Although male-biased mutation has been studied for more than 75 years, its causes are still debated. One obstacle to understanding this pattern is its near universality—without variation in mutation bias, it is difficult to find an underlying cause. Here, we present new data on multiple pedigrees from two primate species: aye-ayes ( Daubentonia madagascariensis ), a member of the strepsirrhine primates, and olive baboons ( Papio anubis ). In stark contrast to the pattern found across mammals, we find a much larger effect of maternal age than paternal age on mutation rates in the aye-aye. In addition, older aye-aye mothers transmit substantially more mutations than older fathers. We carry out both computational and experimental validation of our results, contrasting them with results from baboons and other primates using the same methodologies. Further, we analyze a set of DNA repair and replication genes to identify candidate mutations that may be responsible for the change in mutation bias observed in aye-ayes. Our results demonstrate that mutation bias is not an immutable trait, but rather one that can evolve between closely related species. Further work on aye-ayes (and possibly other lemuriform primates) should help to explain the molecular basis for sex-biased mutation.
Journal Article
Warning SINEs: Alu elements, evolution of the human brain, and the spectrum of neurological disease
by
Hunnicutt, Kelsie E
,
Larsen, Roxanne J
,
Larsen, Peter A
in
Alu elements
,
Central nervous system
,
Chemical elements
2018
Alu elements are a highly successful family of primate-specific retrotransposons that have fundamentally shaped primate evolution, including the evolution of our own species. Alus play critical roles in the formation of neurological networks and the epigenetic regulation of biochemical processes throughout the central nervous system (CNS), and thus are hypothesized to have contributed to the origin of human cognition. Despite the benefits that Alus provide, deleterious Alu activity is associated with a number of neurological and neurodegenerative disorders. In particular, neurological networks are potentially vulnerable to the epigenetic dysregulation of Alu elements operating across the suite of nuclear-encoded mitochondrial genes that are critical for both mitochondrial and CNS function. Here, we highlight the beneficial neurological aspects of Alu elements as well as their potential to cause disease by disrupting key cellular processes across the CNS. We identify at least 37 neurological and neurodegenerative disorders wherein deleterious Alu activity has been implicated as a contributing factor for the manifestation of disease, and for many of these disorders, this activity is operating on genes that are essential for proper mitochondrial function. We conclude that the epigenetic dysregulation of Alu elements can ultimately disrupt mitochondrial homeostasis within the CNS. This mechanism is a plausible source for the incipient neuronal stress that is consistently observed across a spectrum of sporadic neurological and neurodegenerative disorders.
Journal Article
Multiple bursts of speciation in Madagascar’s endangered lemurs
2025
Lemurs are often cited as an example of adaptive radiation, as more than 100 extant species have evolved and filled ecological niches on Madagascar. However, recent work suggests that lemurs lack a hallmark of other adaptive radiations: explosive speciation rates that decline over time. Thus, characterizing the tempo and mode of evolution in lemurs can reveal alternative ways that hyperdiverse clades arise over time, which might differ from traditional models. We explore lemur evolution using a phylogenomic dataset with broad taxonomic sampling that includes the lorisiforms of Asia and continental Africa. Our analyses reveal multiple bursts of diversification (without subsequent declines) that explain much of today’s lemur diversity. We also find higher rates of speciation in Madagascar’s lemurs compared to lorisiforms, and we demonstrate that the lemur clades with high diversification rates also have high rates of genomic introgression. This suggests that hybridization in these primates is not an evolutionary dead-end, but potential fuel for diversification. Considering the conservation crisis affecting strepsirrhine primates, with approximately 95% of species threatened with extinction, this study offers a perspective for explaining Madagascar’s primate diversity and reveals patterns of speciation, extinction, and gene flow that will help inform future conservation decisions.
Here, the authors characterize the tempo and mode of lemur speciation with a phylogenomic dataset that also includes lorisiforms. They find that lemurs exhibited multiple bursts of diversification (without subsequent decline in diversification rate) with the highest diversification rates accompanied by high introgression rates.
Journal Article
Delimiting Species without Nuclear Monophyly in Madagascar's Mouse Lemurs
by
Weisrock, David W.
,
Fiorentino, Isabella
,
Ralison, José M.
in
Analysis
,
Animals
,
Bayes Theorem
2010
Speciation begins when populations become genetically separated through a substantial reduction in gene flow, and it is at this point that a genetically cohesive set of populations attain the sole property of species: the independent evolution of a population-level lineage. The comprehensive delimitation of species within biodiversity hotspots, regardless of their level of divergence, is important for understanding the factors that drive the diversification of biota and for identifying them as targets for conservation. However, delimiting recently diverged species is challenging due to insufficient time for the differential evolution of characters--including morphological differences, reproductive isolation, and gene tree monophyly--that are typically used as evidence for separately evolving lineages.
In this study, we assembled multiple lines of evidence from the analysis of mtDNA and nDNA sequence data for the delimitation of a high diversity of cryptically diverged population-level mouse lemur lineages across the island of Madagascar. Our study uses a multi-faceted approach that applies phylogenetic, population genetic, and genealogical analysis for recognizing lineage diversity and presents the most thoroughly sampled species delimitation of mouse lemur ever performed.
The resolution of a large number of geographically defined clades in the mtDNA gene tree provides strong initial evidence for recognizing a high diversity of population-level lineages in mouse lemurs. We find additional support for lineage recognition in the striking concordance between mtDNA clades and patterns of nuclear population structure. Lineages identified using these two sources of evidence also exhibit patterns of population divergence according to genealogical exclusivity estimates. Mouse lemur lineage diversity is reflected in both a geographically fine-scaled pattern of population divergence within established and geographically widespread taxa, as well as newly resolved patterns of micro-endemism revealed through expanded field sampling into previously poorly and well-sampled regions.
Journal Article
The utility of PacBio circular consensus sequencing for characterizing complex gene families in non-model organisms
by
Larsen, Peter A
,
Yoder, Anne D
,
Heilman, Amy M
in
Algorithms
,
Animal Genetics and Genomics
,
Animals
2014
Background
Molecular characterization of highly diverse gene families can be time consuming, expensive, and difficult, especially when considering the potential for relatively large numbers of paralogs and/or pseudogenes. Here we investigate the utility of Pacific Biosciences single molecule real-time (SMRT) circular consensus sequencing (CCS) as an alternative to traditional cloning and Sanger sequencing PCR amplicons for gene family characterization. We target vomeronasal gene receptors, one of the most diverse gene families in mammals, with the goal of better understanding intra-specific V1R diversity of the gray mouse lemur (
Microcebus murinus
). Our study compares intragenomic variation for two V1R subfamilies found in the mouse lemur. Specifically, we compare gene copy variation within and between two individuals of
M. murinus
as characterized by different methods for nucleotide sequencing. By including the same individual animal from which the
M. murinus
draft genome was derived, we are able to cross-validate gene copy estimates from Sanger sequencing versus CCS methods.
Results
We generated 34,088 high quality circular consensus sequences of two diverse V1R subfamilies (here referred to as V1R
I
and V1R
IX
) from two individuals of
Microcebus murinus
. Using a minimum threshold of 7× coverage, we recovered approximately 90% of V1R
I
sequences previously identified in the draft
M. murinus
genome (59% being identical at all nucleotide positions). When low coverage sequences were considered (i.e. < 7× coverage) 100% of V1R
I
sequences identified in the draft genome were recovered. At least 13 putatively novel V1R loci were also identified using CCS technology.
Conclusions
Recent upgrades to the Pacific Biosciences
RS
instrument have improved the CCS technology and offer an alternative to traditional sequencing approaches. Our results suggest that the
Microcebus murinus
V1R repertoire has been underestimated in the draft genome. In addition to providing an improved understanding of V1R diversity in the mouse lemur, this study demonstrates the utility of CCS technology for characterizing complex regions of the genome. We anticipate that long-read sequencing technologies such as PacBio SMRT will allow for the assembly of multigene family clusters and serve to more accurately characterize patterns of gene copy variation in large gene families, thus revealing novel micro-evolutionary patterns within non-model organisms.
Journal Article
The Mutationathon highlights the importance of reaching standardization in estimates of pedigree-based germline mutation rates
by
Bergeron, Lucie A
,
Besenbacher, Søren
,
Moorjani, Priya
in
Analysis
,
Animals
,
computational pipeline
2022
In the past decade, several studies have estimated the human per-generation germline mutation rate using large pedigrees. More recently, estimates for various nonhuman species have been published. However, methodological differences among studies in detecting germline mutations and estimating mutation rates make direct comparisons difficult. Here, we describe the many different steps involved in estimating pedigree-based mutation rates, including sampling, sequencing, mapping, variant calling, filtering, and appropriately accounting for false-positive and false-negative rates. For each step, we review the different methods and parameter choices that have been used in the recent literature. Additionally, we present the results from a ‘Mutationathon,’ a competition organized among five research labs to compare germline mutation rate estimates for a single pedigree of rhesus macaques. We report almost a twofold variation in the final estimated rate among groups using different post-alignment processing, calling, and filtering criteria, and provide details into the sources of variation across studies. Though the difference among estimates is not statistically significant, this discrepancy emphasizes the need for standardized methods in mutation rate estimations and the difficulty in comparing rates from different studies. Finally, this work aims to provide guidelines for computational and statistical benchmarks for future studies interested in identifying germline mutations from pedigrees.
Journal Article
Comparative analyses of two primate species diverged by more than 60 million years show different rates but similar distribution of genome-wide UV repair events
by
Kaya, Veysel Ogulcan
,
Lindsey-Boltz, Laura
,
Karagoz, Zeynep
in
(6–4)PP
,
Adducts
,
Animal Genetics and Genomics
2021
Background
Nucleotide excision repair is the primary DNA repair mechanism that removes bulky DNA adducts such as UV-induced pyrimidine dimers. Correspondingly, genome-wide mapping of nucleotide excision repair with eXcision Repair sequencing (XR-seq), provides comprehensive profiling of DNA damage repair. A number of XR-seq experiments at a variety of conditions for different damage types revealed heterogenous repair in the human genome. Although human repair profiles were extensively studied, how repair maps vary between primates is yet to be investigated. Here, we characterized the genome-wide UV-induced damage repair in gray mouse lemur,
Microcebus murinus
, in comparison to human.
Results
We derived fibroblast cell lines from mouse lemur, exposed them to UV irradiation, and analyzed the repair events genome-wide using the XR-seq protocol. Mouse lemur repair profiles were analyzed in comparison to the equivalent human fibroblast datasets. We found that overall UV sensitivity, repair efficiency, and transcription-coupled repair levels differ between the two primates. Despite this, comparative analysis of human and mouse lemur fibroblasts revealed that genome-wide repair profiles of the homologous regions are highly correlated, and this correlation is stronger for highly expressed genes. With the inclusion of an additional XR-seq sample derived from another human cell line in the analysis, we found that fibroblasts of the two primates repair UV-induced DNA lesions in a more similar pattern than two distinct human cell lines do.
Conclusion
Our results suggest that mouse lemurs and humans, and possibly primates in general, share a homologous repair mechanism as well as genomic variance distribution, albeit with their variable repair efficiency. This result also emphasizes the deep homologies of individual tissue types across the eukaryotic phylogeny.
Journal Article