Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
52 result(s) for "Yogatama, Dani"
Sort by:
Adaptive Semiparametric Language Models
We present a language model that combines a large parametric neural network (i.e., a transformer) with a non-parametric episodic memory component in an integrated architecture. Our model uses extended short-term context by caching local hidden states—similar to transformer-XL—and global long-term memory by retrieving a set of nearest neighbor tokens at each timestep. We design a gating function to adaptively combine multiple information sources to make a prediction. This mechanism allows the model to use either local context, short-term memory, or long-term memory (or any combination of them) on an ad hoc basis depending on the context. Experiments on word-based and character-based language modeling datasets demonstrate the efficacy of our proposed method compared to strong baselines.
Relational Memory-Augmented Language Models
We present a memory-augmented approach to condition an autoregressive language model on a knowledge graph. We represent the graph as a collection of relation triples and retrieve relevant relations for a given context to improve text generation. Experiments on WikiText-103, WMT19, and enwik8 English datasets demonstrate that our approach produces a better language model in terms of perplexity and bits per character. We also show that relational memory improves coherence, is complementary to token-based memory, and enables causal interventions. Our model provides a simple yet effective way to combine an autoregressive language model and a knowledge graph for more coherent and logical generation.
Questions Are All You Need to Train a Dense Passage Retriever
We introduce , a new corpus-level autoencoding approach for training dense retrieval models that does not require any labeled training data. Dense retrieval is a central challenge for open-domain tasks, such as Open QA, where state-of-the-art methods typically require large supervised datasets with custom hard-negative mining and denoising of positive examples. , in contrast, only requires access to unpaired inputs and outputs (e.g., questions and potential answer passages). It uses a new passage-retrieval autoencoding scheme, where (1) an input question is used to retrieve a set of evidence passages, and (2) the passages are then used to compute the probability of reconstructing the original question. Training for retrieval based on question reconstruction enables effective unsupervised learning of both passage and question encoders, which can be later incorporated into complete Open QA systems without any further finetuning. Extensive experiments demonstrate that obtains state-of-the-art results on multiple QA retrieval benchmarks with only generic initialization from a pre-trained language model, removing the need for labeled data and task-specific losses. Our code and model checkpoints are available at: .
Syntactic Structure Distillation Pretraining for Bidirectional Encoders
Textual representation learners trained on large amounts of data have achieved notable success on downstream tasks; intriguingly, they have also performed well on challenging tests of syntactic competence. Hence, it remains an open question whether scalable learners like BERT can become fully proficient in the syntax of natural language by virtue of data scale alone, or whether they still benefit from more explicit . To answer this question, we introduce a knowledge distillation strategy for injecting syntactic biases into BERT pretraining, by distilling the syntactically informative predictions of a hierarchical—albeit harder to scale—syntactic language model. Since BERT models masked words in bidirectional context, we propose to distill the approximate marginal distribution over words in context from the syntactic LM. Our approach reduces relative error by 2–21% on a diverse set of structured prediction tasks, although we obtain mixed results on the GLUE benchmark. Our findings demonstrate the benefits of syntactic biases, even for representation learners that exploit large amounts of data, and contribute to a better understanding of where syntactic biases are helpful in benchmarks of natural language understanding.
Dynamic Language Models for Streaming Text
We present a probabilistic language model that captures temporal dynamics and conditions on arbitrary context features. These context features serve as important indicators of language changes that are otherwise difficult to capture using text data by itself. We learn our model in an efficient online fashion that is scalable for large, streaming data. With five streaming datasets from two different genres—economics news articles and social media—we evaluate our model on the task of sequential language modeling. Our model consistently outperforms competing models.
Jointly learning sentence embeddings and syntax with unsupervised Tree-LSTMs
We present two studies on neural network architectures that learn to represent sentences by composing their words according to automatically induced binary trees, without ever being shown a correct parse tree. We use Tree-Long Short-Term Memories (LSTMs) as our composition function, applied along a tree structure found by a differentiable natural language chart parser. The models simultaneously optimise both the composition function and the parser, thus eliminating the need for externally provided parse trees, which are normally required for Tree-LSTMs. They can therefore be seen as tree-based recurrent neural networks that are unsupervised with respect to the parse trees. Due to being fully differentiable, the models are easily trained with an off-the-shelf gradient descent method and backpropagation.In the first part of this paper, we introduce a model based on the CKY chart parser, and evaluate its downstream performance on a natural language inference task and a reverse dictionary task. Further, we show how its performance can be improved with an attention mechanism which fully exploits the parse chart, by attending over all possible subspans of the sentence. We find that our approach is competitive against similar models of comparable size and outperforms Tree-LSTMs that use trees produced by a parser.Finally, we present an alternative architecture based on a shift-reduce parser. We perform an analysis of the trees induced by both our models, to investigate whether they are consistent with each other and across re-runs, and whether they resemble the trees produced by a standard parser.
Grandmaster level in StarCraft II using multi-agent reinforcement learning
Many real-world applications require artificial agents to compete and coordinate with other agents in complex environments. As a stepping stone to this goal, the domain of StarCraft has emerged as an important challenge for artificial intelligence research, owing to its iconic and enduring status among the most difficult professional esports and its relevance to the real world in terms of its raw complexity and multi-agent challenges. Over the course of a decade and numerous competitions 1 – 3 , the strongest agents have simplified important aspects of the game, utilized superhuman capabilities, or employed hand-crafted sub-systems 4 . Despite these advantages, no previous agent has come close to matching the overall skill of top StarCraft players. We chose to address the challenge of StarCraft using general-purpose learning methods that are in principle applicable to other complex domains: a multi-agent reinforcement learning algorithm that uses data from both human and agent games within a diverse league of continually adapting strategies and counter-strategies, each represented by deep neural networks 5 , 6 . We evaluated our agent, AlphaStar, in the full game of StarCraft II, through a series of online games against human players. AlphaStar was rated at Grandmaster level for all three StarCraft races and above 99.8% of officially ranked human players. AlphaStar uses a multi-agent reinforcement learning algorithm and has reached Grandmaster level, ranking among the top 0.2% of human players for the real-time strategy game StarCraft II.
Understanding In-Context Learning with a Pelican Soup Framework
Many existing theoretical analyses of in-context learning for natural language processing are based on latent variable models that leaves gaps between theory and practice. We aim to close these gaps by proposing a theoretical framework, the Pelican Soup Framework. In this framework, we introduce (1) the notion of a common sense knowledge base, (2) a general formalism for natural language classification tasks, and the notion of (3) meaning association. Under this framework, we can establish a \\(\\mathcal{O}(1/T)\\) loss bound for in-context learning, where \\(T\\) is the number of example-label pairs in the demonstration. Compared with previous works, our bound reflects the effect of the choice of verbalizers and the effect of instruction tuning. An additional notion of \\textit{atom concepts} makes our framework possible to explain the generalization to tasks unseen in the language model training data. Finally, we propose a toy setup, Calcutec, and a digit addition task that mimics types of distribution shifts a model needs to overcome to perform in-context learning. We also experiment with GPT2-Large on real-world NLP tasks. Our empirical results demonstrate the efficacy of our framework to explain in-context learning.
The Distributional Hypothesis Does Not Fully Explain the Benefits of Masked Language Model Pretraining
We analyze the masked language modeling pretraining objective function from the perspective of the distributional hypothesis. We investigate whether better sample efficiency and the better generalization capability of models pretrained with masked language modeling can be attributed to the semantic similarity encoded in the pretraining data's distributional property. Via a synthetic dataset, our analysis suggests that distributional property indeed leads to the better sample efficiency of pretrained masked language models, but does not fully explain the generalization capability. We also conduct analyses over two real-world datasets and demonstrate that the distributional property does not explain the generalization ability of pretrained natural language models either. Our results illustrate our limited understanding of model pretraining and provide future research directions.
On the Cross-lingual Transferability of Monolingual Representations
State-of-the-art unsupervised multilingual models (e.g., multilingual BERT) have been shown to generalize in a zero-shot cross-lingual setting. This generalization ability has been attributed to the use of a shared subword vocabulary and joint training across multiple languages giving rise to deep multilingual abstractions. We evaluate this hypothesis by designing an alternative approach that transfers a monolingual model to new languages at the lexical level. More concretely, we first train a transformer-based masked language model on one language, and transfer it to a new language by learning a new embedding matrix with the same masked language modeling objective, freezing parameters of all other layers. This approach does not rely on a shared vocabulary or joint training. However, we show that it is competitive with multilingual BERT on standard cross-lingual classification benchmarks and on a new Cross-lingual Question Answering Dataset (XQuAD). Our results contradict common beliefs of the basis of the generalization ability of multilingual models and suggest that deep monolingual models learn some abstractions that generalize across languages. We also release XQuAD as a more comprehensive cross-lingual benchmark, which comprises 240 paragraphs and 1190 question-answer pairs from SQuAD v1.1 translated into ten languages by professional translators.