Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
71 result(s) for "Yokouchi, Y."
Sort by:
Increase in CFC-11 emissions from eastern China based on atmospheric observations
The recovery of the stratospheric ozone layer relies on the continued decline in the atmospheric concentrations of ozone-depleting gases such as chlorofluorocarbons 1 . The atmospheric concentration of trichlorofluoromethane (CFC-11), the second-most abundant chlorofluorocarbon, has declined substantially since the mid-1990s 2 . A recently reported slowdown in the decline of the atmospheric concentration of CFC-11 after 2012, however, suggests that global emissions have increased 3 , 4 . A concurrent increase in CFC-11 emissions from eastern Asia contributes to the global emission increase, but the location and magnitude of this regional source are unknown 3 . Here, using high-frequency atmospheric observations from Gosan, South Korea, and Hateruma, Japan, together with global monitoring data and atmospheric chemical transport model simulations, we investigate regional CFC-11 emissions from eastern Asia. We show that emissions from eastern mainland China are 7.0 ± 3.0 (±1 standard deviation) gigagrams per year higher in 2014–2017 than in 2008–2012, and that the increase in emissions arises primarily around the northeastern provinces of Shandong and Hebei. This increase accounts for a substantial fraction (at least 40 to 60 per cent) of the global rise in CFC-11 emissions. We find no evidence for a significant increase in CFC-11 emissions from any other eastern Asian countries or other regions of the world where there are available data for the detection of regional emissions. The attribution of any remaining fraction of the global CFC-11 emission rise to other regions is limited by the sparsity of long-term measurements of sufficient frequency near potentially emissive regions. Several considerations suggest that the increase in CFC-11 emissions from eastern mainland China is likely to be the result of new production and use, which is inconsistent with the Montreal Protocol agreement to phase out global chlorofluorocarbon production by 2010. Emissions from eastern China account for approximately 40 to 60 per cent of the global rise in emissions of trichlorofluoromethane (CFC-11), which may be a result of new production and use.
Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide
Volatile halogenated organic compounds containing bromine and iodine, which are naturally produced in the ocean, are involved in ozone depletion in both the troposphere and stratosphere. Three prominent compounds transporting large amounts of marine halogens into the atmosphere are bromoform (CHBr3), dibromomethane (CH2Br2) and methyl iodide (CH3I). The input of marine halogens to the stratosphere has been estimated from observations and modelling studies using low-resolution oceanic emission scenarios derived from top-down approaches. In order to improve emission inventory estimates, we calculate data-based high resolution global sea-to-air flux estimates of these compounds from surface observations within the HalOcAt (Halocarbons in the Ocean and Atmosphere) database (https://halocat.geomar.de/). Global maps of marine and atmospheric surface concentrations are derived from the data which are divided into coastal, shelf and open ocean regions. Considering physical and biogeochemical characteristics of ocean and atmosphere, the open ocean water and atmosphere data are classified into 21 regions. The available data are interpolated onto a 1°×1° grid while missing grid values are interpolated with latitudinal and longitudinal dependent regression techniques reflecting the compounds' distributions. With the generated surface concentration climatologies for the ocean and atmosphere, global sea-to-air concentration gradients and sea-to-air fluxes are calculated. Based on these calculations we estimate a total global flux of 1.5/2.5 Gmol Br yr−1 for CHBr3, 0.78/0.98 Gmol Br yr−1 for CH2Br2 and 1.24/1.45 Gmol Br yr−1 for CH3I (robust fit/ordinary least squares regression techniques). Contrary to recent studies, negative fluxes occur in each sea-to-air flux climatology, mainly in the Arctic and Antarctic regions. \"Hot spots\" for global polybromomethane emissions are located in the equatorial region, whereas methyl iodide emissions are enhanced in the subtropical gyre regions. Inter-annual and seasonal variation is contained within our flux calculations for all three compounds. Compared to earlier studies, our global fluxes are at the lower end of estimates, especially for bromoform. An under-representation of coastal emissions and of extreme events in our estimate might explain the mismatch between our bottom-up emission estimate and top-down approaches.
Comprehensive source apportionment of volatile organic compounds using observational data, two receptor models, and an emission inventory in Tokyo metropolitan area
Source contributions of volatile organic compounds (VOCs) were comprehensively evaluated using an observational data set, two receptor models, and an emission inventory. Hourly concentrations of C2–C8 nonmethane hydrocarbons (NMHCs) were measured at Saitama, which is near the northern edge of Tokyo, throughout 2007. Estimates of background NMHC concentrations at the Saitama site corresponded well with median NMHC concentrations at a remote island in Japan in winter and spring. Source contributions of ΔNMHCs (differences between ambient and background concentrations) calculated by the chemical mass balance (CMB) model and positive matrix factorization (PMF) corresponded with each other within a factor of 2. The two receptor models estimated that vehicle exhaust, gasoline vapor, liquefied natural gas and liquefied petroleum gas (LPG), and other evaporative sources contributed 14%–25%, 9%–16%, 7%–10%, and 49%–71%, respectively, to total VOC concentrations on a mass basis. These values agreed with the emission inventory except for the LPG values. In addition, the CMB and PMF results explained at least two thirds of the observed total ΔNMHC values. These results suggest that the current emission inventory roughly captures the individual contributions and total amount of VOC emissions. However, characterization of background NMHCs is necessary to fully understand the VOC budget.
Identification of Toyocamycin, an agent cytotoxic for multiple myeloma cells, as a potent inhibitor of ER stress-induced XBP1 mRNA splicing
The IRE1α-XBP1 pathway, a key component of the endoplasmic reticulum (ER) stress response, is considered to be a critical regulator for survival of multiple myeloma (MM) cells. Therefore, the availability of small-molecule inhibitors targeting this pathway would offer a new chemotherapeutic strategy for MM. Here, we screened small-molecule inhibitors of ER stress-induced XBP1 activation, and identified toyocamycin from a culture broth of an Actinomycete strain. Toyocamycin was shown to suppress thapsigargin-, tunicamycin- and 2-deoxyglucose-induced XBP1 mRNA splicing in HeLa cells without affecting activating transcription factor 6 (ATF6) and PKR-like ER kinase (PERK) activation. Furthermore, although toyocamycin was unable to inhibit IRE1α phosphorylation, it prevented IRE1α-induced XBP1 mRNA cleavage in vitro . Thus, toyocamycin is an inhibitor of IRE1α-induced XBP1 mRNA cleavage. Toyocamycin inhibited not only ER stress-induced but also constitutive activation of XBP1 expression in MM lines as well as primary samples from patients. It showed synergistic effects with bortezomib, and induced apoptosis of MM cells including bortezomib-resistant cells at nanomolar levels in a dose-dependent manner. It also inhibited growth of xenografts in an in vivo model of human MM. Taken together, our results suggest toyocamycin as a lead compound for developing anti-MM therapy and XBP1 as an appropriate molecular target for anti-MM therapy.
Hydrochlorofluorocarbon and hydrofluorocarbon emissions in East Asia determined by inverse modeling
The emissions of three hydrochlorofluorocarbons, HCFC-22 (CHClF2), HCFC-141b (CH3CCl2F) and HCFC-142b (CH3CClF2) and three hydrofluorocarbons, HFC-23 (CHF3), HFC-134a (CH2FCF3) and HFC-152a (CH3CHF2) from four East Asian countries and the Taiwan region for the year 2008 are determined by inverse modeling. The inverse modeling is based on in-situ measurements of these halocarbons at the Japanese stations Cape Ochi-ishi and Hateruma, the Chinese station Shangdianzi and the South Korean station Gosan. For every station and every 3 h, 20-day backward calculations were made with the Lagrangian particle dispersion model FLEXPART. The model output, the measurement data, bottom-up emission information and corresponding uncertainties were fed into an inversion algorithm to determine the regional emission fluxes. The model captures the observed variation of halocarbon mixing ratios very well for the two Japanese stations but has difficulties explaining the large observed variability at Shangdianzi, which is partly caused by small-scale transport from Beijing that is not adequately captured by the model. Based on HFC-23 measurements, the inversion algorithm could successfully identify the locations of factories known to produce HCFC-22 and emit HFC-23 as an unintentional byproduct. This lends substantial credibility to the inversion method. We report national emissions for China, North Korea, South Korea and Japan, as well as emissions for the Taiwan region. Halocarbon emissions in China are much larger than the emissions in the other countries together and contribute a substantial fraction to the global emissions. Our estimates of Chinese emissions for the year 2008 are 65.3±6.6 kt/yr for HCFC-22 (17% of global emissions extrapolated from Montzka et al., 2009), 12.1±1.6 kt/yr for HCFC-141b (22%), 7.3±0.7 kt/yr for HCFC-142b (17%), 6.2±0.7 kt/yr for HFC-23 (>50%), 12.9±1.7 kt/yr for HFC-134a (9% of global emissions estimated from Velders et al., 2009) and 3.4±0.5 kt/yr for HFC-152a (7%).
Sulfur hexafluoride (SF 6 ) emissions in East Asia determined by inverse modeling
Sulfur hexafluoride (SF6) has a global warming potential of around 22 800 over a 100-year time horizon and is one of the greenhouse gases regulated under the Kyoto Protocol. Around the year 2000 there was a reversal in the global SF6 emission trend, from a decreasing to an increasing trend, which was likely caused by increasing emissions in countries that are not obligated to report their annual emissions to the United Nations Framework Convention on Climate Change. In this study, SF6 emissions during the period 2006–2012 for all East Asian countries – including Mongolia, China, Taiwan, North Korea, South Korea and Japan – were determined by using inverse modeling and in situ atmospheric measurements. We found that the most important sources of uncertainty associated with these inversions are related to the choice of a priori emissions and their assumed uncertainty, the station network as well as the meteorological input data. Much lower uncertainties are due to seasonal variability in the emissions, inversion geometry and resolution, and the measurement calibration scale. Based on the results of these sensitivity tests, we estimate that the total SF6 emission in East Asia increased rapidly from 2404 ± 325 Mg yr−1 in 2006 to 3787 ± 512 Mg yr−1 in 2009 and stabilized thereafter. China contributed 60–72% to the total East Asian emission for the different years, followed by South Korea (8–16%), Japan (5–16%) and Taiwan (4–7%), while the contributions from North Korea and Mongolia together were less than 3% of the total. The per capita SF6 emissions are highest in South Korea and Taiwan, while the per capita emissions for China, North Korea and Japan are close to global average. During the period 2006–2012, emissions from China and from South Korea increased, while emissions from Taiwan and Japan decreased overall.
Secondary organic aerosol formation in urban air: Temporal variations and possible contributions from unidentified hydrocarbons
Quantitative evaluation of the performance of one of the most advanced mechanistic secondary organic aerosol (SOA) modules/models, the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution 2 (MADRID2) in the three‐dimensional Models‐3/Community Multiscale Air Quality (CMAQ), in urban air is made. Model calculations are compared for the Tokyo, Japan, metropolitan area with measurements made using an Aerodyne quadrupole aerosol mass spectrometer (Q‐AMS) at an urban site for 9 days in July and August 2003. In general, model calculations reproduced absolute values and temporal variations of meteorological parameters, C2–C8 volatile organic compounds (VOCs), NOx (NO + NO2), inorganic aerosols, and O3 concentrations reasonably well at this site. However, model‐calculated SOA concentrations are a factor of 5 smaller than observed oxygenated organic aerosol (OOA) concentrations, and calculated total organic aerosol (OA = SOA + primary organic aerosol) concentrations are smaller by a factor of 2, indicating missing processes or sources in the current organic aerosol model calculations. On the other hand, observed features of diurnal and day‐to‐day variations of OOA were captured by our model calculations. Because of the large quantity of unidentified total nonmethane VOCs (NMVOCs) in urban air, a possible contribution of SOA formation from high‐molecular‐weight VOCs is examined through simple sensitivity studies, in which emissions are increased to account for unidentified NMVOCs. It is found that they are potentially one of the missing SOA sources, demonstrating the importance of reliable measurements of high‐molecular‐weight VOCs and total NMVOCs. Relationships between SOA and O3, including regional (∼150 × 150 km2) enhancements around the Tokyo metropolitan area, are also discussed.
Global and regional emissions estimates of 1,1-difluoroethane (HFC-152a, CH3CHF2) from in situ and air archive observations
High frequency, in situ observations from 11 globally distributed sites for the period 1994–2014 and archived air measurements dating from 1978 onward have been used to determine the global growth rate of 1,1-difluoroethane (HFC-152a, CH3CHF2). These observations have been combined with a range of atmospheric transport models to derive global emission estimates in a top-down approach. HFC-152a is a greenhouse gas with a short atmospheric lifetime of about 1.5 years. Since it does not contain chlorine or bromine, HFC-152a makes no direct contribution to the destruction of stratospheric ozone and is therefore used as a substitute for the ozone depleting chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs). The concentration of HFC-152a has grown substantially since the first direct measurements in 1994, reaching a maximum annual global growth rate of 0.84 ± 0.05 ppt yr−1 in 2006, implying a substantial increase in emissions up to 2006. However, since 2007, the annual rate of growth has slowed to 0.38 ± 0.04 ppt yr−1 in 2010 with a further decline to an annual average rate of growth in 2013–2014 of −0.06 ± 0.05 ppt yr−1. The annual average Northern Hemisphere (NH) mole fraction in 1994 was 1.2 ppt rising to an annual average mole fraction of 10.1 ppt in 2014. Average annual mole fractions in the Southern Hemisphere (SH) in 1998 and 2014 were 0.84 and 4.5 ppt, respectively. We estimate global emissions of HFC-152a have risen from 7.3 ± 5.6 Gg yr−1 in 1994 to a maximum of 54.4 ± 17.1 Gg yr−1 in 2011, declining to 52.5 ± 20.1 Gg yr−1 in 2014 or 7.2 ± 2.8 Tg-CO2 eq yr−1. Analysis of mole fraction enhancements above regional background atmospheric levels suggests substantial emissions from North America, Asia, and Europe. Global HFC emissions (so called “bottom up” emissions) reported by the United Nations Framework Convention on Climate Change (UNFCCC) are based on cumulative national emission data reported to the UNFCCC, which in turn are based on national consumption data. There appears to be a significant underestimate ( >  20 Gg) of “bottom-up” reported emissions of HFC-152a, possibly arising from largely underestimated USA emissions and undeclared Asian emissions.
Multipoint measurements of a Pipe Using HTS-SQUID and Magnetostriction-Based Ultrasonic Guided Wave
This paper describes study on remote inspection technology for pipes by using magnetostriction-based ultrasonic guided wave and high temperature superconductor (HTS) superconducting quantum interference device (SQUID) gradiometer. Magnetized nickel plates were adhered on an aluminium pipe sample, in order to use them as magnetostriction-based guided wave transceivers. A pair of 10mm-wide nickel plate with different angle arrangement were used to transceive uniformly distributed guided waves at all angles. A field coil was wound around one set of the nickel plates as a transmitter, while the other was used as a receiver. T (0, 1) mode guided wave was generated on the pipe by supplying a burst sine wave current of one cycle at several tens kHz to the coil. Multipoint measurements of the T (0, 1) mode guided waves around the pipe's circumference were carried out by setting the HTS-SQUID gradiometer above the receiver with lift-off of about 9 mm and rotating the pipe for 360 degrees. Signal of reflected wave from an artificial slit on the sample was well detected. We simulated the distribution of the guided wave propagating on the pipe with the slit using an ultrasonic simulator and compared the distribution with the experiment result. The guided wave signal distributions including the defect signal obtained by experiment and simulation agreed well.
Global and regional emission estimates for HCFC-22
HCFC-22 (CHClF2, chlorodifluoromethane) is an ozone-depleting substance (ODS) as well as a significant greenhouse gas (GHG). HCFC-22 has been used widely as a refrigerant fluid in cooling and air-conditioning equipment since the 1960s, and it has also served as a traditional substitute for some chlorofluorocarbons (CFCs) controlled under the Montreal Protocol. A low frequency record on tropospheric HCFC-22 since the late 1970s is available from measurements of the Southern Hemisphere Cape Grim Air Archive (CGAA) and a few Northern Hemisphere air samples (mostly from Trinidad Head) using the Advanced Global Atmospheric Gases Experiment (AGAGE) instrumentation and calibrations. Since the 1990s high-frequency, high-precision, in situ HCFC-22 measurements have been collected at these AGAGE stations. Since 1992, the Global Monitoring Division of the National Oceanic and Atmospheric Administration/Earth System Research Laboratory (NOAA/ESRL) has also collected flasks on a weekly basis from remote sites across the globe and analyzed them for a suite of halocarbons including HCFC-22. Additionally, since 2006 flasks have been collected approximately daily at a number of tower sites across the US and analyzed for halocarbons and other gases at NOAA. All results show an increase in the atmospheric mole fractions of HCFC-22, and recent data show a growth rate of approximately 4% per year, resulting in an increase in the background atmospheric mole fraction by a factor of 1.7 from 1995 to 2009. Using data on HCFC-22 consumption submitted to the United Nations Environment Programme (UNEP), as well as existing bottom-up emission estimates, we first create globally-gridded a priori HCFC-22 emissions over the 15 yr since 1995. We then use the three-dimensional chemical transport model, Model for Ozone and Related Chemical Tracers version 4 (MOZART v4), and a Bayesian inverse method to estimate global as well as regional annual emissions. Our inversion indicates that the global HCFC-22 emissions have an increasing trend between 1995 and 2009. We further find a surge in HCFC-22 emissions between 2005 and 2009 from developing countries in Asia – the largest emitting region including China and India. Globally, substantial emissions continue despite production and consumption being phased out in developed countries currently.