Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
76
result(s) for
"Yon Rojanasakul"
Sort by:
Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity
by
Wang, Liying
,
Rojanasakul, Yon
,
Manke, Amruta
in
DNA Damage - drug effects
,
Environmental Exposure
,
Humans
2013
The rapidly emerging field of nanotechnology has offered innovative discoveries in the medical, industrial, and consumer sectors. The unique physicochemical and electrical properties of engineered nanoparticles (NP) make them highly desirable in a variety of applications. However, these novel properties of NP are fraught with concerns for environmental and occupational exposure. Changes in structural and physicochemical properties of NP can lead to changes in biological activities including ROS generation, one of the most frequently reported NP-associated toxicities. Oxidative stress induced by engineered NP is due to acellular factors such as particle surface, size, composition, and presence of metals, while cellular responses such as mitochondrial respiration, NP-cell interaction, and immune cell activation are responsible for ROS-mediated damage. NP-induced oxidative stress responses are torch bearers for further pathophysiological effects including genotoxicity, inflammation, and fibrosis as demonstrated by activation of associated cell signaling pathways. Since oxidative stress is a key determinant of NP-induced injury, it is necessary to characterize the ROS response resulting from NP. Through physicochemical characterization and understanding of the multiple signaling cascades activated by NP-induced ROS, a systemic toxicity screen with oxidative stress as a predictive model for NP-induced injury can be developed.
Journal Article
Protein Nanoparticles as Drug Delivery Carriers for Cancer Therapy
by
Rojanasakul, Yon
,
Wang, Liying
,
Chen, Yi Charlie
in
Antimitotic agents
,
Antineoplastic agents
,
Antineoplastic Agents - administration & dosage
2014
Nanoparticles have increasingly been used for a variety of applications, most notably for the delivery of therapeutic and diagnostic agents. A large number of nanoparticle drug delivery systems have been developed for cancer treatment and various materials have been explored as drug delivery agents to improve the therapeutic efficacy and safety of anticancer drugs. Natural biomolecules such as proteins are an attractive alternative to synthetic polymers which are commonly used in drug formulations because of their safety. In general, protein nanoparticles offer a number of advantages including biocompatibility and biodegradability. They can be prepared under mild conditions without the use of toxic chemicals or organic solvents. Moreover, due to their defined primary structure, protein-based nanoparticles offer various possibilities for surface modifications including covalent attachment of drugs and targeting ligands. In this paper, we review the most significant advancements in protein nanoparticle technology and their use in drug delivery arena. We then examine the various sources of protein materials that have been used successfully for the construction of protein nanoparticles as well as their methods of preparation. Finally, we discuss the applications of protein nanoparticles in cancer therapy.
Journal Article
Advances in Nanotechnology-Based Biosensing of Immunoregulatory Cytokines
by
Abbas, Zareen
,
Rojanasakul, Yon
,
Lohcharoenkal, Warangkana
in
Antibodies
,
Antigens
,
Biosensing Techniques
2021
Cytokines are a large group of small proteins secreted by immune and non-immune cells in response to external stimuli. Much attention has been given to the application of cytokines’ detection in early disease diagnosis/monitoring and therapeutic response assessment. To date, a wide range of assays are available for cytokines detection. However, in specific applications, multiplexed or continuous measurements of cytokines with wearable biosensing devices are highly desirable. For such efforts, various nanomaterials have been extensively investigated due to their extraordinary properties, such as high surface area and controllable particle size and shape, which leads to their tunable optical emission, electrical, and magnetic properties. Different types of nanomaterials such as noble metal, metal oxide, and carbon nanoparticles have been explored for various biosensing applications. Advances in nanomaterial synthesis and device development have led to significant progress in pushing the limit of cytokine detection. This article reviews currently used methods for cytokines detection and new nanotechnology-based biosensors for ultrasensitive cytokine detection.
Journal Article
A novel TRPM7/O-GlcNAc axis mediates tumour cell motility and metastasis by stabilising c-Myc and caveolin-1 in lung carcinoma
by
Rodboon, Napachai
,
Klamkhlai, Siwaporn
,
Luanpitpong, Sudjit
in
631/337/458
,
631/67/2327
,
631/80/84/2336
2020
Background
Calcium is an essential signal transduction element that has been associated with aggressive behaviours in several cancers. Cell motility is a prerequisite for metastasis, the major cause of lung cancer death, yet its association with calcium signalling and underlying regulatory axis remains an unexplored area.
Methods
Bioinformatics database analyses were employed to assess correlations between calcium influx channels and clinical outcomes in non-small cell lung cancer (NSCLC). Functional and regulatory roles of influx channels in cell migration and invasion were conducted and experimental lung metastasis was examined using in vivo live imaging.
Results
High expression of TRPM7 channel correlates well with the low survival rate of patients and high metastatic potential. Inhibition of TRPM7 suppresses cell motility in various NSCLC cell lines and patient-derived primary cells and attenuates experimental lung metastases. Mechanistically, TRPM7 acts upstream of
O
-GlcNAcylation, a post-translational modification and a crucial sensor for metabolic changes. We reveal for the first time that caveolin-1 and c-Myc are favourable molecular targets of TRPM7/
O
-GlcNAc that regulates NSCLC motility.
O
-GlcNAcylation of caveolin-1 and c-Myc promotes protein stability by interfering with their ubiquitination and proteasomal degradation.
Conclusions
TRPM7/
O
-GlcNAc axis represents a potential novel target for lung cancer therapy that may overcome metastasis.
Journal Article
O-GlcNAcylation homeostasis controlled by calcium influx channels regulates multiple myeloma dissemination
2021
Background
Multiple myeloma (MM) cell motility is a critical step during MM dissemination throughout the body, but how it is regulated remains largely unknown. As hypercalcemia is an important clinical feature of MM, high calcium (Ca
2+
) and altered Ca
2+
signaling could be a key contributing factor to the pathological process.
Methods
Bioinformatics analyses were employed to assess the clinical significance of Ca
2+
influx channels in clinical specimens of smoldering and symptomatic MM. Functional and regulatory roles of influx channels and downstream signaling in MM cell migration and invasion were conducted and experimental MM dissemination was examined in a xenograft mouse model using in vivo live imaging and engraftment analysis.
Results
Inhibition of TRPM7, ORAI1, and STIM1 influx channels, which are highly expressed in MM patients, and subsequent blockage of Ca
2+
influx by CRISPR/Cas9 and small molecule inhibitors, effectively inhibit MM cell migration and invasion, and attenuate the experimental MM dissemination. Mechanistic studies reveal a nutrient sensor
O
-GlcNAcylation as a downstream regulator of Ca
2+
influx that specifically targets cell adhesion molecules. Hyper
-O
-GlcNAcylation following the inhibition of Ca
2+
influx channels induces integrin α4 and integrin β7 downregulation via ubiquitin-proteasomal degradation and represses the aggressive MM phenotype.
Conclusions
Our findings unveil a novel regulatory mechanism of MM cell motility via Ca
2+
influx/
O
-GlcNAcylation axis that directly targets integrin α4 and integrin β7, providing mechanistic insights into the pathogenesis and progression of MM and demonstrating potential predictive biomarkers and therapeutic targets for advanced MM.
Journal Article
Mesothelin promotes epithelial-to-mesenchymal transition and tumorigenicity of human lung cancer and mesothelioma cells
by
Wang, Liying
,
Dinu, Cerasela Zoica
,
He, Xiaoqing
in
Animals
,
Biomedical and Life Sciences
,
Biomedicine
2017
Background
Lung cancer and pleural mesothelioma are two of the most deadly forms of cancer. The prognosis of lung cancer and mesothelioma is extremely poor due to limited treatment modalities and lack of understanding of the disease mechanisms. We have identified mesothelin as a potentially unique therapeutic target that as a specific advantage appears nonessential in most cell types. Mesothelin (MSLN), a plasma membrane differentiation antigen, is expressed at a high level in many human solid tumors, including 70% of lung cancer and nearly all mesotheliomas. However, the role of MSLN in the disease process and underlying mechanisms is largely unknown.
Methods
ShRNA knockdown and overexpression of MSLN were performed in human cancer cell lines and corresponding normal cells, respectively. Tumorigenic and metastatic effects of MSLN were examined by tumor sphere formation, migration, and invasion assays in vitro, as well as xenograft tumor assay in vivo. EMT and CSCs were detected by qPCR array, immunoblotting and flow cytometry.
Results
MSLN plays a key role in controlling epithelial-to-mesenchymal transition (EMT) and stem properties of human lung cancer and mesothelioma cells that control their tumorigenicity and metastatic potential. Firstly, MSLN was found to be highly upregulated in non-small cell lung cancer (NSCLC) patient tissues and in lung carcinoma and mesothelioma cell lines. Secondly, genetic knockdown of MSLN significantly reduced anchorage-independent cell growth, tumor sphere formation, cell adhesion, migration and invasion in vitro, as well as tumor formation and metastasis in vivo. Thirdly, ectopic overexpression of MSLN induced the malignant phenotype of non-cancerous cells, supporting its role as an oncogene. Finally, mechanistic studies revealed that knockdown of MSLN reversed EMT and attenuated stem cell properties, in addition to inhibiting tumor growth and metastasis.
Conclusions
These results indicate an essential role of MSLN in controlling EMT and stem cell properties of human lung cancer and mesothelioma cells. Since EMT is an important process in tumor progression and metastasis, and MSLN is nonessential in most normal tissue, our findings on MSLN may provide new insights into the disease mechanisms and may aid in the development of novel targeted therapy for lung cancer and mesothelioma.
Journal Article
Variation in pentose phosphate pathway-associated metabolism dictates cytotoxicity outcomes determined by tetrazolium reduction assays
by
Derk, Raymond
,
Coyle, Jayme P.
,
Kornberg, Tiffany G.
in
6-Aminonicotinamide
,
631/1647
,
631/45
2023
Tetrazolium reduction and resazurin assays are the mainstay of routine in vitro toxicity batteries. However, potentially erroneous characterization of cytotoxicity and cell proliferation can arise if verification of baseline interaction of test article with method employed is neglected. The current investigation aimed to demonstrate how interpretation of results from several standard cytotoxicity and proliferation assays vary in dependence on contributions from the pentose phosphate pathway (PPP). Non-tumorigenic Beas-2B cells were treated with graded concentrations of benzo[a]pyrene (B[a]P) for 24 and 48 h prior to cytotoxicity and proliferation assessment with commonly used MTT, MTS, WST1, and Alamar Blue assays. B[a]P caused enhanced metabolism of each dye assessed despite reductions in mitochondrial membrane potential and was reversed by 6-aminonicotinamide (6AN)—a glucose-6-phosphate dehydrogenase inhibitor. These results demonstrate differential sensitivity of standard cytotoxicity assessments on the PPP, thus (1) decoupling “mitochondrial activity” as an interpretation of cellular formazan and Alamar Blue metabolism, and (2) demonstrating the implicit requirement for investigators to sufficiently verify interaction of these methods in routine cytotoxicity and proliferation characterization. The nuances of method-specific extramitochondrial metabolism must be scrutinized to properly qualify specific endpoints employed, particularly under the circumstances of metabolic reprogramming.
Journal Article
Toxicity screening of two prevalent metal organic frameworks for therapeutic use in human lung epithelial cells
by
Wagner, Alixandra
,
Liu, Qian
,
Dinu, Cerasela Zoica
in
Biomedical engineering
,
Cell Line
,
Cell Survival - drug effects
2019
The flexibility and tunability of metal organic frameworks (MOFs), crystalline porous materials composed of a network of metal ions coordinated by organic ligands, confer their variety of applications as drug delivery systems or as sensing and imaging agents. However, such properties also add to the difficulty in ensuring their safe implementation when interaction with biological systems is considered.
In the current study, we used real-time sensorial strategies and cellular-based approaches to allow for fast and effective screening of two MOFs of prevalent use, namely, MIL-160 representative of a hydrophilic and ZIF-8 representative of a hydrophobic framework. The two MOFs were synthesized \"in house\" and exposed to human bronchial epithelial (BEAS-2B) cells, a pertinent toxicological screening model.
Analysis allowed evaluation and differentiation of particle-induced cellular effects as well identification of different degrees and routes of toxicity, all in a high-throughput manner. Our results show the importance of performing screening toxicity assessments before introducing MOFs to biomedical applications.
Our proposed screening assays could be extended to a wider variety of cell lines to allow for identification of any deleterious effects of MOFs, with the range of toxic mechanisms to be differentiated based on cell viability, morphology and cell-substrate interactions, respectively.
Our analysis highlights the importance of considering the physicochemical properties of MOFs when recommending a MOF-based therapeutic option or MOFs implementation in biomedical applications.
Journal Article
Musashi-2 in cancer-associated fibroblasts promotes non-small cell lung cancer metastasis through paracrine IL-6-driven epithelial-mesenchymal transition
by
Heenatigala Palliyage, Gayathri
,
Samart, Parinya
,
Rojanasakul, Yon
in
Animal models
,
Biomedical and Life Sciences
,
Cancer-associated fibroblast
2023
Background
Lung cancer, the most common cause of cancer-related mortality worldwide, is predominantly associated with advanced/metastatic disease. The interaction between tumor cells and cancer-associated fibroblasts (CAFs) in tumor microenvironment is known to be essential for regulating tumor progression and metastasis, but the underlying mechanisms, particularly the role of RNA-binding protein Musashi-2 (MSI2) in CAFs in promoting non-small cell lung cancer (NSCLC) invasiveness and metastatic spread, remain obscure.
Methods
Genomic and proteomic database analyses were performed to evaluate the potential clinical significance of MSI2 in NSCLC tumor and stromal clinical specimens. Molecular approaches were used to modify MSI2 in CAFs and determine its functional role in NSCLC cell motility in vitro using 2D and 3D models, and in metastasis in a xenograft mouse model using live-cell imaging.
Results
MSI2, both gene and protein, is upregulated in NSCLC tissues and is associated with poor prognosis and high metastatic risk in patients. Interestingly, MSI2 is also upregulated in NSCLC stroma and activated fibroblasts, including CAFs. Depletion of MSI2 in CAFs by CRISPR-Cas9 strongly inhibits NSCLC cell migration and invasion in vitro, and attenuates local and distant metastatic spread of NSCLC cells in vivo. The crosstalk between CAFs and NSCLC cells occurs via paracrine signaling, which is regulated by MSI2 in CAFs via IL-6. The secreted IL-6 promotes epithelial-mesenchymal transition in NSCLC cells, which drives metastasis.
Conclusion
Our findings reveal for the first time that MSI2 in CAFs is important in CAF-mediated NSCLC cell invasiveness and metastasis via IL-6 paracrine signaling. Therefore, targeting the MSI2/IL-6 axis in CAFs could be effective in combating NSCLC metastasis.
Journal Article
Theasaponin E1 Inhibits Platinum-Resistant Ovarian Cancer Cells through Activating Apoptosis and Suppressing Angiogenesis
2021
Novel therapeutic strategies for ovarian cancer treatment are in critical need due to the chemoresistance and adverse side effects of platinum-based chemotherapy. Theasaponin E1 (TSE1) is an oleanane-type saponin from Camellia sinensis seeds. Its apoptosis-inducing, cell cycle arresting and antiangiogenesis activities against platinum-resistant ovarian cancer cells were elucidated in vitro and using the chicken chorioallantoic membrane (CAM) assay. The results showed that TSE1 had more potent cell growth inhibitory effects on ovarian cancer OVCAR-3 and A2780/CP70 cells than cisplatin and was lower in cytotoxicity to normal ovarian IOSE-364 cells. TSE1 significantly induced OVCAR-3 cell apoptosis via the intrinsic and extrinsic apoptotic pathways, slightly arresting cell cycle at the G2/M phase, and obviously inhibited OVCAR-3 cell migration and angiogenesis with reducing the protein secretion and expression of vascular endothelial growth factor (VEGF). Western bolt assay showed that Serine/threonine Kinase (Akt) signaling related proteins including Ataxia telangiectasia mutated kinase (ATM), Phosphatase and tensin homolog (PTEN), Akt, Mammalian target of rapamycin (mTOR), Ribosome S6 protein kinase (p70S6K) and e IF4E-binding protein 1(4E-BP1) were regulated, and Hypoxia inducible factor-1α (HIF-1α) protein expression was decreased by TSE1 in OVCAR-3 cells. Moreover, TSE1 treatment potently downregulated protein expression of the Notch ligands including Delta-like protein 4 (Dll4) and Jagged1, and reduced the protein level of the intracellular domain (NICD) of Notch1. Combination treatment of TSE1 with the Notch1 signaling inhibitor tert-butyl (2S)-2-[[(2S)-2-[[2-(3,5-difluorophenyl)acetyl]amino]propanoyl]amino]-2-phenylacetate (DAPT), or the Akt signaling inhibitor wortmannin, showed a stronger inhibition toward HIF-1α activation compared with single compound treatment. Taken together, TSE1 might be a potential candidate compound for improving platinum-resistant ovarian cancer treatment via Dll4/Jagged1-Notch1-Akt-HIF-1α axis.
Journal Article