Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
34 result(s) for "Yoo, Hyeong-Jun"
Sort by:
Advanced Laboratory Testing Methods Using Real-Time Simulation and Hardware-in-the-Loop Techniques: A Survey of Smart Grid International Research Facility Network Activities
The integration of smart grid technologies in interconnected power system networks presents multiple challenges for the power industry and the scientific community. To address these challenges, researchers are creating new methods for the validation of: control, interoperability, reliability of Internet of Things systems, distributed energy resources, modern power equipment for applications covering power system stability, operation, control, and cybersecurity. Novel methods for laboratory testing of electrical power systems incorporate novel simulation techniques spanning real-time simulation, Power Hardware-in-the-Loop, Controller Hardware-in-the-Loop, Power System-in-the-Loop, and co-simulation technologies. These methods directly support the acceleration of electrical systems and power electronics component research by validating technological solutions in high-fidelity environments. In this paper, members of the Survey of Smart Grid International Research Facility Network task on Advanced Laboratory Testing Methods present a review of methods, test procedures, studies, and experiences employing advanced laboratory techniques for validation of range of research and development prototypes and novel power system solutions.
Multi-Frequency Control in a Stand-Alone Multi-Microgrid System Using a Back-To-Back Converter
A stand-alone multi-microgrid (MMG) system can be formed by connecting multiple stand-alone microgrids (MGs). In the stand-alone MMG system where the frequencies of each MG system are different, a back-to-back (BTB) converter can be used for interconnecting the adjacent MG system. The frequency control performance of the MMG system can be improved by designing the suitable controller of the BTB converter. This study proposes a multi-frequency control in the BTB converter to improve the performance of frequency regulation in the MMG system. Autonomous power sharing between each MG system is achieved by using the proposed multi-frequency control. The stand-alone MMG system where two stand-alone MG systems with different nominal frequencies are interconnected using the BTB converter is simulated in this study to show the feasibility of the proposed multi-frequency controller. Each stand-alone MG system consists of an inverter-based distributed generator (DG) that uses a grid-forming converter with a conventional frequency droop controller. The inverter-based DG is responsible for the primary frequency control in each MG system. To show the effectiveness of the proposed multi-frequency control, a comparison study of the multi-frequency control and the single frequency control is presented in this study. Simulation results show that the system stability can be improved by using the proposed multi-frequency controller.
Effect Quantification of BESS Providing Frequency Response on Penetration Limit of VER in Power Systems
Increasing the penetration of variable energy resources (VER) can reduce the inertia and frequency response performance of power systems supported by replacement synchronous power generation. Therefore, it is necessary to manage the VER penetration limit in power systems for stable operation and to increase the operability to the desired level. This study proposes a method to evaluate and quantify the effect of increasing the penetration limit of VER by controlling a battery energy storage system (BESS). The BESS can provide a fast response, but frequency response performance varies depending on the operating conditions. In the proposed quantification method, various control methods of a BESS, operating conditions of the power system, and penetration conditions of additional VER were analyzed, and the effect of the BESS on increasing the penetration limit of VER was evaluated. This evaluation and analysis enabled the selection of the BESS operating conditions to achieve the target VER capacity in the power system. The proposed quantification method was analyzed through simulations based on the Korean power system model. Therefore, it can contribute to estimating the required performance of the BESS for each system operating condition required to achieve the VER target.
Low-Voltage Ride-Through Operation of Grid-Connected Microgrid Using Consensus-Based Distributed Control
Since the penetration of distributed energy resources (DERs) and energy storage systems (ESSs) into the microgrid (MG) system has increased significantly, the sudden disconnection of DERs and ESSs might affect the stability and reliability of the whole MG system. The low-voltage ride-through (LVRT) capability to maintain stable operation of the MG system should be considered. The main contribution of this study is to propose a distributed control, based on a dynamic consensus algorithm for LVRT operation of the MG system. The proposed control method is based on a hierarchical control that consists of primary and secondary layers. The primary layer is in charge of power regulation, while the secondary layer is responsible for the LVRT operation of the MG system. The droop controller is used in the primary layer to maintain power sharing among parallel-distributed generators in the MG system. The dynamic consensus algorithm is used in the secondary layer to control the accurate reactive power sharing and voltage restoration for LVRT operation. A comparison study on the proposed control method and centralized control method is presented in this study to show the effectiveness of the proposed controller. Different scenarios of communication failures are carried out to show the reliability of the proposed control method. The tested MG system and proposed controller are modeled in a MATLAB/Simulink environment to show the feasibility of the proposed control method.
Analyzing the Impacts of System Parameters on MPC-Based Frequency Control for a Stand-Alone Microgrid
Model predictive control (MPC) has been widely studied for regulating frequency in stand-alone microgrids (MGs), owing to the advantages of MPC such as fast response and robustness against the parameter uncertainties. Understanding the impacts of system parameters on the control performance of MPC could be useful for the designing process of the controller to achieve better performance. This study analyzes the impact of system parameters on the control performance of MPC for frequency regulation in a stand-alone MG. The typical stand-alone MG, which consists of a diesel engine generator, an energy storage system (ESS), a wind turbine generator, and a load, is considered in this study. The diesel engine generator is in charge of primary frequency control whereas the ESS is responsible for secondary frequency control. The stand-alone MG is linearized to obtain the dynamic model that is used for designing MPC-based secondary frequency control. The robustness of MPC against the variation of system parameters is also analyzed in this study. A comparison study of MPC and proportional–integral (PI) control is presented. Simulation results show that MPC has a faster response time and lower overshoot compared to PI control. In addition, the robustness of MPC against the system uncertainties is stronger than conventional PI control.
Application of Model Predictive Control to BESS for Microgrid Control
Battery energy storage systems (BESSs) have been widely used for microgrid control. Generally, BESS control systems are based on proportional-integral (PI) control techniques with the outer and inner control loops based on PI regulators. Recently, model predictive control (MPC) has attracted attention for application to future energy processing and control systems because it can easily deal with multivariable cases, system constraints, and nonlinearities. This study considers the application of MPC-based BESSs to microgrid control. Two types of MPC are presented in this study: MPC based on predictive power control (PPC) and MPC based on PI control in the outer and predictive current control (PCC) in the inner control loops. In particular, the effective application of MPC for microgrids with multiple BESSs should be considered because of the differences in their control performance. In this study, microgrids with two BESSs based on two MPC techniques are considered as an example. The control performance of the MPC used for the control microgrid is compared to that of the PI control. The proposed control strategy is investigated through simulations using MATLAB/Simulink software. The simulation results show that the response time, power and voltage ripples, and frequency spectrum could be improved significantly by using MPC.
MPC with Constant Switching Frequency for Inverter-Based Distributed Generations in Microgrid Using Gradient Descent
Variable switching frequency in the finite control set model predictive control (FCS-MPC) method causes a negative impact on the converter efficiency and the design of the output filters. Several studies have addressed the problem, but they are either complicated or require heavy computation. This study proposes a new model predictive control (MPC) method with constant switching frequency, which is simple to implement and needs only a small computation time. The proposed MPC method is based on the gradient descent (GD) method to find the optimal voltage vector. Since the cost function of the MPC method is represented in the strongly convex function, the optimal voltage vector could be found quickly by using the GD method, which reduces the computation time of the MPC method. The design of the proposed MPC method based on GD (GD-MPC) is shown in this study. The feasibility of the proposed GD-MPC is evaluated in the real-time simulation using OPAL-RT technologies. The performance of the proposed method in the case of single inverter operation or parallel inverter operation is shown. A comparison study on the proposed GD-MPC and the MPC with the concept of the virtual state vector (VSV-MPC) is presented to demonstrate the effectiveness of the proposed predictive control. Real-time simulation results show that the proposed GD-MPC method performs better with a low total harmonic distortion (THD) value of output current and short computation time, compared to the VSV-MPC method.
A Flywheel Energy Storage System Based on a Doubly Fed Induction Machine and Battery for Microgrid Control
Microgrids are eco-friendly power systems because they use renewable sources such as solar and wind power as the main power source. However, the stochastic nature of wind and solar power is a considerable challenge for the efficient operation of microgrids. Microgrid operations have to satisfy quality requirements in terms of the frequency and voltage. To overcome these problems, energy storage systems for short- and long-term storage are used with microgrids. Recently, the use of short-term energy storage systems such as flywheels has attracted significant interest as a potential solution to this problem. Conventional flywheel energy storage systems exhibit only one control mode during operation: either smoothing wind power control or frequency control. In this paper, we propose a new flywheel energy storage system based on a doubly fed induction machine and a battery for use with microgrids. The new flywheel energy storage system can be used not only to mitigate wind power fluctuations, but also to control the frequency as well as the voltage of the microgrid during islanded operation. The performance of the proposed flywheel energy storage system is investigated through various simulations using MATLAB/Simulink software. In addition, a conventional flywheel energy storage system based on a doubly fed induction machine is simulated and its performance compared with that of the proposed one.
Improving Transient Response of Power Converter in a Stand-Alone Microgrid Using Virtual Synchronous Generator
Multiple power converters based on the droop controllers have been used widely in the microgrid (MG) system. However, owing to the different response time among several types of power converters such as grid-feeding and grid-forming converters, low frequency oscillation occurs with high overshoot in the transient state. This paper proposes a novel control strategy based on the virtual synchronous generator (VSG) for improving transient response of parallel power converters during large disturbance in the stand-alone microgrid. The proposed VSG control, which inherits the transient state characteristic of the synchronous generator, can provide inertia virtually to the system. The transient response of voltage and frequency is improved, while the total system inertia response is compensated. Thus, the system stability can be enhanced by using the proposed VSG control. Additionally, the small signal analysis of the conventional VSG controller and the proposed VSG controller are carried out to show the effectiveness of the proposed VSG controller. The derivation of frequency, which is used to evaluate the inertia support of the VSG controller to the MG system, is discussed. The simulation result demonstrates that the overshoot of the transient response can be reduced, and the system stability is improved when the proposed VSG controller is applied. The MG system based on the real-time simulator OP5600 (OPAL-RT Technologies, Montreal, QC, Canada) is carried out to verify the feasibility of the proposed VSG controller.
Direct Phase Angle and Voltage Amplitude Model Predictive Control of a Power Converter for Microgrid Applications
Several control strategies of the finite control set model predictive controls (FCS-MPC) have been proposed for power converters, such as predictive current control (PCC), direct predictive power control (DPPC), and predictive voltage control (PVC). However, for microgrid (MG) applications, the control strategy of the FCS-MPC for a power converter might be changed according to the operation mode of the MG system, which results in a transient response in the system voltage or current during the mode transition. This study proposes a new control strategy of FCS-MPC for use in both islanded and grid-connected operation modes of an MG system. Considering the characteristic of a synchronous generator, a direct phase angle and voltage amplitude model predictive control (PAC) of a power converter is proposed in this study for MG applications. In the islanded mode, the system frequency is directly controlled through the phase angle of the output voltage. In the grid-connected mode, a proportional-integral (PI) regulator is used to compensate for the phase angle and voltage amplitude of the power converter for constant power control. The phase angle of the system voltage can be easily adjusted for the synchronization process of an MG system. A comparison study on the proposed PAC method and existing predictive methods is carried out to show the effectiveness of the proposed method. The feasibility of the proposed PAC strategy is evaluated in a simulation-based system by using the MATLAB/Simulink environment.