Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
70 result(s) for "Yoon Changhwan"
Sort by:
E-cadherin is a biomarker for ferroptosis sensitivity in diffuse gastric cancer
Gastric cancer is the third most common cause of cancer-related death worldwide. Diffuse-type gastric cancer (DGC) is a particularly aggressive subtype that is both difficult to detect and treat. DGC is distinguished by weak cell–cell cohesion, most often due to loss of the cell adhesion protein E-cadherin, a common occurrence in highly invasive, metastatic cancer cells. In this study, we demonstrate that loss-of-function mutation of E-cadherin in DGC cells results in their increased sensitivity to the non-apoptotic, iron-dependent form of cell death, ferroptosis. Homophilic contacts between E-cadherin molecules on adjacent cells suppress ferroptosis through activation of the Hippo pathway. Furthermore, single nucleotide mutations observed in DGC patients that ablate the homophilic binding capacity of E-cadherin reverse the ability of E-cadherin to suppress ferroptosis in both cell culture and xenograft models. Importantly, although E-cadherin loss in cancer cells is considered an essential event for epithelial-mesenchymal transition and subsequent metastasis, we found that circulating DGC cells lacking E-cadherin expression possess lower metastatic ability, due to their increased susceptibility to ferroptosis. Together, this study suggests that E-cadherin is a biomarker predicting the sensitivity to ferroptosis of DGC cells, both in primary tumor tissue and in circulation, thus guiding the usage of future ferroptosis-inducing therapeutics for the treatment of DGC.
Vascular Endothelial Growth Factor A Inhibition in Gastric Cancer
Angiogenesis is a vital process in the progression and metastasis of solids tumors including gastric adenocarcinoma. Tumors induce angiogenesis by secreting proangiogenic molecules such as vascular endothelial growth factor A (VEGF-A), and VEGF-A inhibition has become a common therapeutic strategy for many cancers. Several drugs targeting the VEGF-A pathway have been approved for clinical use in selected solid tumors, and several anti-VEGF-A strategies have been examined for gastric cancer. Phase II studies suggested that bevacizumab, an anti-VEGF antibody, can increase the efficacy of chemotherapy for advanced gastric cancer, but two international phase III trials failed to show an overall survival benefit. Two more recent international phase III trials have examined ramucirumab, an antibody targeting the primary receptor for VEGF-A, as second-line therapy for advanced gastric cancer and found a survival benefit both as single agent therapy and when combined with chemotherapy. Finally, correlative science studies suggest that the VEGF-A pathway may have varying importance in gastric cancer progression depending on ethnicity or race. This article will review the preclinical and clinical studies on the role of the VEGF-A pathway inhibition in gastric cancer.
Long-Term Survival after Minimally Invasive Versus Open Gastrectomy for Gastric Adenocarcinoma: A Propensity Score-Matched Analysis of Patients in the United States and China
BackgroundThis study aimed to compare the long-term survival of patients undergoing minimally invasive gastrectomy and those undergoing open gastrectomy for gastric adenocarcinoma (GA) in the United States and China.MethodsData on patients with GA who underwent gastrectomy without neoadjuvant therapy were retrieved from prospectively maintained databases at Memorial Sloan Kettering Cancer Center (MSKCC) and Fujian Medical University Union Hospital (FMUUH). Using propensity score-matching (PSM), equally sized cohorts of patients with similar clinical and pathologic characteristics who underwent minimally invasive versus open gastrectomy were selected. The primary end point of the study was 5-year overall survival (OS).ResultsThe study identified 479 patients who underwent gastrectomy at MSKCC between 2000 and 2012 and 2935 patients who underwent gastrectomy at FMUUH between 2006 and 2014. Of the total 3432 patients, 1355 underwent minimally invasive gastrectomy, and 2059 underwent open gastrectomy. All the patients had at least 5 years of potential follow-up evaluation. Before PSM, most patient characteristics differed significantly between the patients undergoing the two types of surgery. After PSM, each cohort included 889 matched patients, and the actual 5-year OS did not differ significantly between the two cohorts, with an OS rate of 54% after minimally invasive gastrectomy and 50.4% after open gastrectomy (p = 0.205). Subgroup analysis confirmed that survival was similar between surgical cohorts among the patients for each stage of GA and for those undergoing distal versus total/proximal gastrectomy. In the multivariable analysis, surgical approach was not an independent prognostic factor.ConclusionsAfter PSM of U.S. and Chinese patients with GA undergoing gastrectomy, long-term survival did not differ significantly between the patients undergoing minimally invasive gastrectomy and those undergoing open gastrectomy.
ERK1/2-Nanog signaling pathway enhances CD44(+) cancer stem-like cell phenotypes and epithelial-to-mesenchymal transition in head and neck squamous cell carcinomas
Head and neck squamous cell carcinomas (HNSCCs) harbor a subset of cells that are CD44(+) and present with malignancy and radiotherapy resistance. As a key regulator of self-renewal, Nanog expression not only determines cell fate in pluripotent cells but also mediates tumorigenesis in cancer cells; thus, we examined the role of Nanog in CD44(+) HNSCC. Three HNSCC cell lines, tumor xenografts, and patient tumors were examined. Nanog levels were significantly higher in CD44(+) HNSCC spheroids than in CD44(-) spheroids, and further increased when grown as spheroids to enrich for CSCs. CD44(+) spheroids showed a 3.4-7.5-fold increase in migration and invasion compared with CD44(-) spheroids and were resistant to radiation therapy, which was reversed by inhibiting Nanog. Nanog knockdown also decreased spheroid formation by 66.5-68.8%. Moreover, a phosphokinase array identified upregulated ERK1/2 signaling in CD44(+) HNSCC cells compared with that in CD44(-) cells. ERK1/2 signaling was found to regulate Nanog expression, aiding tumor progression, metastasis, and radiotherapy resistance. In xenograft models, the combination of radiation and Nanog or ERK1/2 inhibition inhibited tumor growth by 75.6% and 79.1%, respectively. In lung metastasis models, CD44(+) cells injected into the tail vein of mice led to significantly more lung metastases and higher Nanog expression level compared with that by ERK1/2-knockdown CD44(+) cells. Finally, in tumor tissues, CD44 and Nanog expression levels were correlated with tumorigenesis in HNSCC patients. Thus, targeting Nanog and the ERK1/2 signaling pathway may prevent or reverse CSC phenotypes and epithelial-mesenchymal transition that drive tumor progression, metastasis, and radiotherapy resistance in HNSCC.
A Patient-Specific 3D+t Coronary Artery Motion Modeling Method Using Hierarchical Deformation with Electrocardiogram
Cardiovascular-related diseases are one of the leading causes of death worldwide. An understanding of heart movement based on images plays a vital role in assisting postoperative procedures and processes. In particular, if shape information can be provided in real-time using electrocardiogram (ECG) signal information, the corresponding heart movement information can be used for cardiovascular analysis and imaging guides during surgery. In this paper, we propose a 3D+t cardiac coronary artery model which is rendered in real-time, according to the ECG signal, where hierarchical cage-based deformation modeling is used to generate the mesh deformation used during the procedure. We match the blood vessel’s lumen obtained from the ECG-gated 3D+t CT angiography taken at multiple cardiac phases, in order to derive the optimal deformation. Splines for 3D deformation control points are used to continuously represent the obtained deformation in the multi-view, according to the ECG signal. To verify the proposed method, we compare the manually segmented lumen and the results of the proposed method for eight patients. The average distance and dice coefficient between the two models were 0.543 mm and 0.735, respectively. The required time for registration of the 3D coronary artery model was 23.53 s/model. The rendering speed to derive the model, after generating the 3D+t model, was faster than 120 FPS.
CDK5RAP3 as tumour suppressor negatively regulates self-renewal and invasion and is regulated by ERK1/2 signalling in human gastric cancer
Background Toward identifying new strategies to target gastric cancer stem-like cells (CSCs), we evaluated the function of the tumour suppressor CDK5 regulatory subunit-associated protein 3 (CDK5RAP3) in gastric CSC maintenance. Methods We examined the expression of CDK5RAP3 and CD44 in gastric cancer patients. The function and mechanisms of CDK5RAP3 were checked in human and mouse gastric cancer cell lines and in mouse xenograft. Results We show that CDK5RAP3 is weakly expressed in gastric CSCs and is negatively correlated with the gastric CSC marker CD44. CDK5RAP3 overexpression decreased expression of CSC markers, spheroid formation, invasion and migration, and reversed chemoresistance in gastric CSCs in vitro and vivo. CDK5RAP3 expression was found to be regulated by extracellular-related kinase (ERK) signalling. ERK inhibitors decreased spheroid formation, migration and invasion, and the expression of epithelial-to-mesenchymal transition (EMT)-related proteins in both GA cells and organoids derived from a genetically engineered mouse model of GA. Finally, CDK5RAP3 expression was associated with reduced lymph-node metastasis and better prognosis, even in the presence of high expression of the EMT transcription factor Snail, among patients with CD44-positive GA. Conclusions Our results demonstrate that CDK5RAP3 is suppressed by ERK signalling and negatively regulates the self-renewal and EMT of gastric CSCs.
RETRACTED ARTICLE: KRAS activation in gastric cancer stem-like cells promotes tumor angiogenesis and metastasis
Our previous work showed that KRAS activation in gastric cancer cells leads to activation of an epithelial-to-mesenchymal transition (EMT) program and generation of cancer stem-like cells (CSCs). Here we analyze how this KRAS activation in gastric CSCs promotes tumor angiogenesis and metastasis. Gastric cancer CSCs were found to secrete pro-angiogenic factors such as vascular endothelial growth factor A (VEGF-A), and inhibition of KRAS markedly reduced secretion of these factors. In a genetically engineered mouse model, gastric tumorigenesis was markedly attenuated when both KRAS and VEGF-A signaling were blocked. In orthotropic implant and experimental metastasis models, silencing of KRAS and VEGF-A using shRNA in gastric CSCs abrogated primary tumor formation, lymph node metastasis, and lung metastasis far greater than individual silencing of KRAS or VEGF-A. Analysis of gastric cancer patient samples using RNA sequencing revealed a clear association between high expression of the gastric CSC marker CD44 and expression of both KRAS and VEGF-A, and high CD44 and VEGF-A expression predicted worse overall survival. In conclusion, KRAS activation in gastric CSCs enhances secretion of pro-angiogenic factors and promotes tumor progression and metastasis.
Increased CD44 Expression and MEK Activity Predict Worse Prognosis in Gastric Adenocarcinoma Patients Undergoing Gastrectomy
Purpose We have shown that activation of the receptor tyrosine kinase (RTK)-RAS pathway in gastric adenocarcinoma (GA) promotes acquisition of cancer stem-like cell (CSC) phenotypes including metastasis and chemotherapy resistance. Here, we evaluated the prognostic value of the CSC marker CD44 and the RTK-RAS activation marker phosphorylated MEK (p-MEK) in patients with resectable GA. Methods CD44 and p-MEK were measured in tumors from GA patients who underwent curative-intent gastrectomy at Fujian Medical University Union Hospital (FMUUH, n  = 134) and Memorial Sloan Kettering Cancer Center (MSKCC, n  = 56). Overall survival (OS) was estimated by the Kaplan-Meier method, and multivariate analysis was performed by Cox proportional hazards regression modeling. Results Despite multiple significant differences in clinicopathologic characteristics between the FMUUH and MSKCC cohorts, high CD44 and high p-MEK expression were both independent negative prognostic factors for OS on univariate analysis in both cohorts ( p  < 0.05). Both factors were also significant on multivariate analysis when the cohorts were combined ( p  ≤ 0.003). On subgroup analysis, the 5-year OS of patients with both high CD44 and high p-MEK was 39.5–41.6% compared with 55.4–66.4% for patients with low CD44. High CD44 expression was associated with more advanced TNM stage in the FMUUH cohort and larger tumor size and undifferentiated histology in the MSKCC cohort. High p-MEK was associated with undifferentiated histology in the FMUUH cohort and larger tumor size in the MSKCC cohort. Conclusions Increased CD44 and p-MEK expression are predictive of worse OS in GA patients. Thus, targeting the RTK-RAS pathway may benefit patients with CD44-positive, RAS-activated GA by inhibiting metastasis and reversing chemotherapy resistance.