Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
7 result(s) for "Yoshe"
Sort by:
Mad 'cause she ain't you
\"Ebony, Phoenix and Joi are three thirty-somethings with some serious man problems! ... Find out who learns the lessons, and who will have to repeat the class\" --Cover p. [4].
Estimation of change in terrestrial water storage for Abbay River Basin, Ethiopia
Access to freshwater resources has become more limited. Correspondingly, water monitoring methods in sensitive or critical areas interims of terrestrial water storage are becoming increasingly important. The monitoring of the water storage in this area, using appropriate methods and datasets, is highly effective in preventing possible future water crises. This paper aims to estimate terrestrial water storage of the Abbay River Basin with available data and tools where hydro climatological studies are scarce due to limited observation. The data obtained from Global Land Assimilation System (GLDAS), gravity recovery and climate experiment (GRACE), and TerraClimate were used for the analysis of terrestrial water storage in the river basin. The result shows that there was a varying trend of terrestrial water storage for the study time. We have observed water shortages during the dry season and surplus water during the wet season. The monitoring of changes in terrestrial water storage is crucial for optimal water resource utilization and our results confirm the major role of such monitoring in decision-making processes and management.
Assessment of anthropogenic and climate-driven water storage variations over water-stressed river basins of Ethiopia
Globally, surface water, groundwater, soil moisture, snow storage, canopy water, and wet biomass constituents make up water storage, which plays a significant role in the hydrological water balance. Evaluating the variations in water storage anomalies associated with climate forcing and human activities over river basins is crucial for assessing water scarcity and predicting potential pressures on water resources in the future. In this study, we assessed the impacts of climatic and anthropogenic drivers on the change in water storage in the river basins of Ethiopia by using the independent component analysis to examine Gravity Recovery and Climate Experiment with the Global Land Data Assimilate System-based water storage and comparing the independent component analysis with hydro-meteorological data and statistical data related to human activities. It is of great significance for helping people better understand the evaluation of terrestrial water storage anomalies under the combined influence of climatic change and anthropogenic activities and providing information for better protection and utilization of water resources at river basin level. It is crucial to take effective measures to protect these precious land and water resources and prevent their further deterioration. The estimated result will be essential for sustainable water management and protection.
Integrated approach for groundwater potential exploration in Abbay River Basin, East Africa,RETRACTED ARTICLE: Integrated approach for groundwater potential exploration in Abbay River Basin, East Africa
This paper presents and examines groundwater potential zones with the help of remote sensing and GIS methods for controlling and investigating the geospatial data of each parameter. Groundwater is a very important source for water supply and others, considering its availability, quality, cost, and time-effectiveness to develop. It is virtually everywhere and yet variable in quantity. Because of several conditions, such as rapid population growth, urbanization, industrialization, and agricultural development, groundwater sources are under severe threat. Climate change plays an important role in the quality and quantity of groundwater potential. In addition, climate change severely affects parameters that influence groundwater recharge. Unreliable exploitation and poor quality of surface water resources tend to increase the decline in groundwater levels. Hence, it is necessary to identify groundwater potential zones that can be used to optimize and monitor groundwater resources. This study was conducted in the Abbay River Basin and identifies the location of groundwater potential for developing new supplies that could be used for a range of purposes in the study area, where groundwater serves as the main source for agricultural purposes rather than surface water. Seven selected parameters—lineament density, precipitation, geology, drainage density, land use, slope, and soil data—were collected, processed, resampled, projected, and reclassified for hydrological analysis. For the generation of groundwater zones, weightage was calculated using an analytical hierarchy method, reclassified, ranked, and overlaid with GIS. The obtained results of weightage were lineament density (37%), precipitation (30%), geology (14%), drainage density (7%), land use land cover (5%), slope (4%), and soil (3%). The consistency ratio estimated for this study was 0.089, which was acceptable for further analysis. Based on the integration of all thematic layers and the generated groundwater potential zones, the map was reclassified into five different classes, namely very good, good, moderate, poor, and very poor. The results of this study reveal that 1295.33 km 2 of the study area can be considered very poor, 58,913.1 km 2 is poor, 131,323 km 2 is moderate, 18,557 km 2 is good, and 311.5 km 2 is very good. Any groundwater management project performed in the better regions would offer the greatest value. A similar study would be valuable before planning any water resource development activity, as this would save the expense of comprehensive field investigations. This study also demonstrates the importance of remote sensing and GIS techniques in mapping groundwater potential at the basin scale and suggests that similar methods could be applied across other river basins.
RETRACTED ARTICLE: Integrated approach forgroundwater potential exploration in Abbay River Basin, East Africa
This paper presents and examines groundwater potential zones with the help of remote sensing and GIS methods for controlling and investigating the geospatial data of each parameter. Groundwater is a very important source for water supply and others, considering its availability, quality, cost, and time-effectiveness to develop. It is virtually everywhere and yet variable in quantity. Because of several conditions, such as rapid population growth, urbanization, industrialization, and agricultural development, groundwater sources are under severe threat. Climate change plays an important role in the quality and quantity of groundwater potential. In addition, climate change severely affects parameters that influence groundwater recharge. Unreliable exploitation and poor quality of surface water resources tend to increase the decline in groundwater levels. Hence, it is necessary to identify groundwater potential zones that can be used to optimize and monitor groundwater resources. This study was conducted in the Abbay River Basin and identifies the location of groundwater potential for developing new supplies that could be used for a range of purposes in the study area, where groundwater serves as the main source for agricultural purposes rather than surface water. Seven selected parameters—lineament density, precipitation, geology, drainage density, land use, slope, and soil data—were collected, processed, resampled, projected, and reclassified for hydrological analysis. For the generation of groundwater zones, weightage was calculated using an analytical hierarchy method, reclassified, ranked, and overlaid with GIS. The obtained results of weightage were lineament density (37%), precipitation (30%), geology (14%), drainage density (7%), land use land cover (5%), slope (4%), and soil (3%). The consistency ratio estimated for this study was 0.089, which was acceptable for further analysis. Based on the integration of all thematic layers and the generated groundwater potential zones, the map was reclassified into five different classes, namely very good, good, moderate, poor, and very poor. The results of this study reveal that 1295.33 km2 of the study area can be considered very poor, 58,913.1 km2 is poor, 131,323 km2 is moderate, 18,557 km2 is good, and 311.5 km2 is very good. Any groundwater management project performed in the better regions would offer the greatest value. A similar study would be valuable before planning any water resource development activity, as this would save the expense of comprehensive field investigations. This study also demonstrates the importance of remote sensing and GIS techniques in mapping groundwater potential at the basin scale and suggests that similar methods could be applied across other river basins.
RETRACTED ARTICLE: Integrated approach for groundwater potential exploration in Abbay River Basin, East Africa
This paper presents and examines groundwater potential zones with the help of remote sensing and GIS methods for controlling and investigating the geospatial data of each parameter. Groundwater is a very important source for water supply and others, considering its availability, quality, cost, and time-effectiveness to develop. It is virtually everywhere and yet variable in quantity. Because of several conditions, such as rapid population growth, urbanization, industrialization, and agricultural development, groundwater sources are under severe threat. Climate change plays an important role in the quality and quantity of groundwater potential. In addition, climate change severely affects parameters that influence groundwater recharge. Unreliable exploitation and poor quality of surface water resources tend to increase the decline in groundwater levels. Hence, it is necessary to identify groundwater potential zones that can be used to optimize and monitor groundwater resources. This study was conducted in the Abbay River Basin and identifies the location of groundwater potential for developing new supplies that could be used for a range of purposes in the study area, where groundwater serves as the main source for agricultural purposes rather than surface water. Seven selected parameters—lineament density, precipitation, geology, drainage density, land use, slope, and soil data—were collected, processed, resampled, projected, and reclassified for hydrological analysis. For the generation of groundwater zones, weightage was calculated using an analytical hierarchy method, reclassified, ranked, and overlaid with GIS. The obtained results of weightage were lineament density (37%), precipitation (30%), geology (14%), drainage density (7%), land use land cover (5%), slope (4%), and soil (3%). The consistency ratio estimated for this study was 0.089, which was acceptable for further analysis. Based on the integration of all thematic layers and the generated groundwater potential zones, the map was reclassified into five different classes, namely very good, good, moderate, poor, and very poor. The results of this study reveal that 1295.33 km 2 of the study area can be considered very poor, 58,913.1 km 2 is poor, 131,323 km 2 is moderate, 18,557 km 2 is good, and 311.5 km 2 is very good. Any groundwater management project performed in the better regions would offer the greatest value. A similar study would be valuable before planning any water resource development activity, as this would save the expense of comprehensive field investigations. This study also demonstrates the importance of remote sensing and GIS techniques in mapping groundwater potential at the basin scale and suggests that similar methods could be applied across other river basins.
Optimizing the Structure and Parameters of Local Wastewater Disposal System Based on Flow Models
The paper investigates the issues of transporting wastewater from small settlements to centralized sewage treatment facilities, taking into account the use of various modes of transport. For each mode of transport we determined the dependences of life cycle costs on the amount of wastewater flow and its transportation over different distances. Taking into account these dependences we obtained the ranges for the use of road and pipeline transport and developed methods for optimizing the structure and parameters of local wastewater disposal systems.