Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
10
result(s) for
"Yoshioka, Reyn"
Sort by:
Increases and decreases in marine disease reports in an era of global change
by
Tracy, Allison M.
,
Heron, Scott F.
,
Harvell, C. Drew
in
Animals
,
Anthozoa
,
Aquatic Organisms - physiology
2019
Outbreaks of marine infectious diseases have caused widespread mass mortalities, but the lack of baseline data has precluded evaluating whether disease is increasing or decreasing in the ocean. We use an established literature proxy method from Ward and Lafferty (Ward and Lafferty 2004 PLoS Biology 2 , e120 ( doi:10.1371/journal.pbio.0020120 )) to analyse a 44-year global record of normalized disease reports from 1970 to 2013. Major marine hosts are combined into nine taxonomic groups, from seagrasses to marine mammals, to assess disease swings, defined as positive or negative multi-decadal shifts in disease reports across related hosts. Normalized disease reports increased significantly between 1970 and 2013 in corals and urchins, indicating positive disease swings in these environmentally sensitive ectotherms. Coral disease reports in the Caribbean correlated with increasing temperature anomalies, supporting the hypothesis that warming oceans drive infectious coral diseases. Meanwhile, disease risk may also decrease in a changing ocean. Disease reports decreased significantly in fishes and elasmobranchs, which have experienced steep human-induced population declines and diminishing population density that, while concerning, may reduce disease. The increases and decreases in disease reports across the 44-year record transcend short-term fluctuations and regional variation. Our results show that long-term changes in disease reports coincide with recent decades of widespread environmental change in the ocean.
Journal Article
Ochre star mortality during the 2014 wasting disease epizootic: role of population size structure and temperature
by
Maynard, Jeffrey
,
Rivlin, Natalie
,
Harvell, C. Drew
in
Animal Diseases - pathology
,
Animals
,
Climate Change
2016
Over 20 species of asteroids were devastated by a sea star wasting disease (SSWD) epizootic, linked to a densovirus, from Mexico to Alaska in 2013 and 2014. For Pisaster ochraceus from the San Juan Islands, South Puget Sound and Washington outer coast, time-series monitoring showed rapid disease spread, high mortality rates in 2014, and continuing levels of wasting in the survivors in 2015. Peak prevalence of disease at 16 sites ranged to 100%, with an overall mean of 61%. Analysis of longitudinal data showed disease risk was correlated with both size and temperature and resulted in shifts in population size structure; adult populations fell to one quarter of pre-outbreak abundances. In laboratory experiments, time between development of disease signs and death was influenced by temperature in adults but not juveniles and adult mortality was 18% higher in the 19°C treatment compared to the lower temperature treatments. While larger ochre stars developed disease signs sooner than juveniles, diseased juveniles died more quickly than diseased adults. Unusual 2–3°C warm temperature anomalies were coincident with the summer 2014 mortalities. We suggest these warm waters could have increased the disease progression and mortality rates of SSWD in Washington State.
Journal Article
Warming sea surface temperatures fuel summer epidemics of eelgrass wasting disease
by
Rappazzo, Brendan
,
Rivlin, Natalie D.
,
Fiorenza, Evan A.
in
Aquatic plants
,
Chemical analysis
,
Correlation
2021
Seawater temperatures are increasing, with many unquantified impacts on marine diseases. While prolonged temperature stress can accelerate host–pathogen interactions, the outcomes in nature are poorly quantified. We monitored eelgrass wasting disease (EWD) from 2013–2017 and correlated mid-summer prevalence of EWD with remotely sensed seawater temperature metrics before, during, and after the 2015–2016 marine heatwave in the northeast Pacific, the longest marine heatwave in recent history. Eelgrass shoot density declined by 60% between 2013 and 2015 and did not recover. EWD prevalence ranged from 5–70% in 2013 and increased to 60–90% by 2017. EWD severity approximately doubled each year between 2015 and 2017. EWD prevalence was positively correlated with warmer temperature for the month prior to sampling while EWD severity was negatively correlated with warming prior to sampling. This complex result may be mediated by leaf growth; bigger leaves may be more likely to be diseased, but may also grow faster than lesions, resulting in lower severity. Regional stressors leading to population declines prior to or early in the heatwave may have exacerbated the effects of warming on eelgrass disease susceptibility and reduced the resilience of this critical species.
Journal Article
Standard ecological and molecular research methods and techniques for Labyrinthula spp
by
Sullivan, Brooke K.
,
Jakobsson-Thor, Stina
,
Eisenlord, Morgan
in
Acid production
,
Algae
,
bioassay
2023
Labyrinthula are unicellular protists occupying diverse spatial and functional niches, including various roles in host and ecological function, fatty acid production, pandemic marine disease and saprobic decomposition. Labyrinthula species span tropical and temperate climates and have been isolated from each marine coastal ecosystem tested. Our understanding of primary cellular and molecular functions of Labyrinthula has substantially progressed through a combination of increased global investments, research interest and technological advances. Recent advances in molecular techniques provide a toolkit for advancing ecological questions in marine infectious disease in seagrass meadows around the world. Here we provide a comprehensive review of relevant ecological and molecular techniques used in long-term research and the progression of Labyrinthula scholarship. Our aims in preparing this review are to: 1) share, compare and advance global Labyrinthula protocols, 2) increase accessibility to robust methodology to encourage the uptake of Labyrinthula -based questions into marine studies of molecular and ecological qualities of Labyrinthula and 3) encourage uptake of robust Labyrinthula -based questions into coastal marine studies, while also encouraging international collaborative networks across multiple fields. Lastly, we discuss gaps in the over 100 years of Labyrinthula research and opportunities for expanding research on this model marine organism.
Journal Article
Up in Arms: Immune and Nervous System Response to Sea Star Wasting Disease
by
Tracy, Allison M.
,
Gignoux-Wolfsohn, Sarah
,
Yoshioka, Reyn
in
Analysis
,
Animals
,
Arachidonic acid
2015
Echinoderms, positioned taxonomically at the base of deuterostomes, provide an important system for the study of the evolution of the immune system. However, there is little known about the cellular components and genes associated with echinoderm immunity. The 2013-2014 sea star wasting disease outbreak is an emergent, rapidly spreading disease, which has led to large population declines of asteroids in the North American Pacific. While evidence suggests that the signs of this disease, twisting arms and lesions, may be attributed to a viral infection, the host response to infection is still poorly understood. In order to examine transcriptional responses of the sea star Pycnopodia helianthoides to sea star wasting disease, we injected a viral sized fraction (0.2 μm) homogenate prepared from symptomatic P. helianthoides into apparently healthy stars. Nine days following injection, when all stars were displaying signs of the disease, specimens were sacrificed and coelomocytes were extracted for RNA-seq analyses. A number of immune genes, including those involved in Toll signaling pathways, complement cascade, melanization response, and arachidonic acid metabolism, were differentially expressed. Furthermore, genes involved in nervous system processes and tissue remodeling were also differentially expressed, pointing to transcriptional changes underlying the signs of sea star wasting disease. The genomic resources presented here not only increase understanding of host response to sea star wasting disease, but also provide greater insight into the mechanisms underlying immune function in echinoderms.
Journal Article
Devastating Transboundary Impacts of Sea Star Wasting Disease on Subtidal Asteroids
2016
Sea star wasting disease devastated intertidal sea star populations from Mexico to Alaska between 2013-15, but little detail is known about its impacts to subtidal species. We assessed the impacts of sea star wasting disease in the Salish Sea, a Canadian / United States transboundary marine ecosystem, and world-wide hotspot for temperate asteroid species diversity with a high degree of endemism. We analyzed roving diver survey data for the three most common subtidal sea star species collected by trained volunteer scuba divers between 2006-15 in 5 basins and on the outer coast of Washington, as well as scientific strip transect data for 11 common subtidal asteroid taxa collected by scientific divers in the San Juan Islands during the spring/summer of 2014 and 2015. Our findings highlight differential susceptibility and impact of sea star wasting disease among asteroid species populations and lack of differences between basins or on Washington's outer coast. Specifically, severe depletion of sunflower sea stars (Pycnopodia helianthoides) in the Salish Sea support reports of major declines in this species from California to Alaska, raising concern for the conservation of this ecologically important subtidal predator.
Journal Article
Increases and decreases in marine disease reports in an era of global change
2019
Outbreaks of marine infectious diseases have caused widespread mass mortalities, but the lack of baseline data has precluded evaluating whether disease is increasing or decreasing in the ocean. We use an established literature proxy method from Ward and Lafferty (Ward and Lafferty 2004 PLoS Biology 2, e120 (doi:10.1371/journal.pbio.0020120)) to analyse a 44-year global record of normalized disease reports from 1970 to 2013. Major marine hosts are combined into nine taxonomic groups, from seagrasses to marine mammals, to assess disease swings, defined as positive or negative multi-decadal shifts in disease reports across related hosts. Normalized disease reports increased significantly between 1970 and 2013 in corals and urchins, indicating positive disease swings in these environmentally sensitive ectotherms. Coral disease reports in the Caribbean correlated with increasing temperature anomalies, supporting the hypothesis that warming oceans drive infectious coral diseases. Meanwhile, disease risk may also decrease in a changing ocean. Disease reports decreased significantly in fishes and elasmobranchs, which have experienced steep human-induced population declines and diminishing population density that, while concerning, may reduce disease. The increases and decreases in disease reports across the 44-year record transcend short-term fluctuations and regional variation. Our results show that long-term changes in disease reports coincide with recent decades of widespread environmental change in the ocean.
Journal Article
Food Web Consequences of a Seagrass Microparasite and a Crustacean Macroparasite
2021
Despite their ubiquity and known ecological impacts, parasites are still infrequently considered in studies of trophic ecology. Additionally, the most recognized effects of marine parasites on food webs are those caused by mass mortalities. In contrast to these density-mediated effects, trait-mediated indirect interactions (TMII), where host ecological function is altered through parasitism, are less conspicuous but not necessarily less important. In this dissertation, I present studies of potential TMIIs of two marine parasites. he protist Labyrinthula zosterae D. Porter & Muehlstein (Lz) infects the eelgrass Zostera marina L. First, in Chapter II, I ask whether Lz may increase the nutrition of eelgrass tissue by synthesizing DHA, a nutritious ω-3 fatty acid (FA), based on Lz’s relatives. By culturing Lz on various substrates, I found that Lz produces DHA as its primary FA and in detectable amounts in diseased tissue. This suggested that diseased tissue may be more nutritious for eelgrass consumers, which I tested in Chapter III using the detritivorous copepod Tisbe sp. Lilljeborg. Providing Tisbe either healthy or diseased eelgrass segments, I asked whether diseased eelgrass was functionally like detritus and fostered copepod population growth. Diseased eelgrass segments produced greater copepod numbers than healthy ones. Resulting copepods did not show clear differences in DHA, suggesting that FA changes were less important than eelgrass material becoming more labile via disease. Nonetheless, this showed that disease may foster secondary production. In Chapter IV, I studied the effects of the rhizocephalan Sylon hippolytes M. Sars infecting the shrimp Pandalus danae Stimpson. Using a field survey, I found that Sylon increased rates of epibiosis on hosts, which may interfere with shrimp antipredator defenses. Infected shrimp also showed distinct FA profiles relative to uninfected ones, with changes substantial enough to alter dietary mixing model predictions. Thus, Sylon may affect marine trophic interactions and our understanding of them. Altogether, this work shows that Lz and Sylon can substantially alter their hosts, producing unrecognized TMIIs in their ecosystems. The results encourage further research into these systems and a greater appreciation for marine parasites in food webs.
Dissertation
Ochre star mortality during the 2014 wasting disease epizootic: role of population size structure and temperature
by
Maynard, Jeffrey
,
Rivlin, Natalie
,
Harvell, C. Drew
in
Animal diseases
,
Disease models
,
Disease outbreaks
2016
Over 20 species of asteroids were devastated by a sea star wasting disease (SSWD) epizootic, linked to a densovirus, from Mexico to Alaska in 2013 and 2014. For Pisaster ochraceus from the San Juan Islands, South Puget Sound and Washington outer coast, time-series monitoring showed rapid disease spread, high mortality rates in 2014, and continuing levels of wasting in the survivors in 2015. Peak prevalence of disease at 16 sites ranged to 100%, with an overall mean of 61%. Analysis of longitudinal data showed disease risk was correlated with both size and temperature and resulted in shifts in population size structure; adult populations fell to one quarter of pre-outbreak abundances. In laboratory experiments, time between development of disease signs and death was influenced by temperature in adults but not juveniles and adult mortality was 18% higher in the 19°C treatment compared to the lower temperature treatments. While larger ochre stars developed disease signs sooner than juveniles, diseased juveniles died more quickly than diseased adults. Unusual 2–3°C warm temperature anomalies were coincident with the summer 2014 mortalities. We suggest these warm waters could have increased the disease progression and mortality rates of SSWD in Washington State.
Journal Article
Up in Arms: Immune and Nervous System Response to Sea Star Wasting Disease: e0133053
2015
Echinoderms, positioned taxonomically at the base of deuterostomes, provide an important system for the study of the evolution of the immune system. However, there is little known about the cellular components and genes associated with echinoderm immunity. The 2013-2014 sea star wasting disease outbreak is an emergent, rapidly spreading disease, which has led to large population declines of asteroids in the North American Pacific. While evidence suggests that the signs of this disease, twisting arms and lesions, may be attributed to a viral infection, the host response to infection is still poorly understood. In order to examine transcriptional responses of the sea star Pycnopodia helianthoides to sea star wasting disease, we injected a viral sized fraction (0.2 mu m) homogenate prepared from symptomatic P. helianthoides into apparently healthy stars. Nine days following injection, when all stars were displaying signs of the disease, specimens were sacrificed and coelomocytes were extracted for RNA-seq analyses. A number of immune genes, including those involved in Toll signaling pathways, complement cascade, melanization response, and arachidonic acid metabolism, were differentially expressed. Furthermore, genes involved in nervous system processes and tissue remodeling were also differentially expressed, pointing to transcriptional changes underlying the signs of sea star wasting disease. The genomic resources presented here not only increase understanding of host response to sea star wasting disease, but also provide greater insight into the mechanisms underlying immune function in echinoderms.
Journal Article