Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
1,604 result(s) for "Young, Julie"
Sort by:
Mobilizing global knowledge : refugee research in an age of displacement
\"In 2018, the United Nations High Commission for Refugees documented a record high 71.4 million displaced people around the world. As states struggle with the costs of providing protection to so many people and popular conceptions of refugees have become increasingly politicized and sensationalized, researchers have come together to form regional and global networks dedicated to working with displaced people to learn how to respond to their needs ethically, compassionately, and for the best interests of the global community. \"Mobilizing Global Knowledge\" brings together academics and practitioners to reflect on a global collaborative refugee research network. Together, the members of this network have had a wide-ranging impact on research and policy, working to bridge silos, sectors, and regions. They have addressed power and politics in refugee research, engaged across tensions between the Global North and Global South, and worked deeply with questions of practice, methodology, and ethics in refugee research. Bridging scholarship on network building for knowledge production and scholarship on research with and about refugees, \"Mobilizing Global Knowledge\" brings together a vibrant collection of topics and perspectives. It addresses ethical methods in research practice, the possibilities of social media for data collection and information dissemination, environmental displacement, transitional justice, and more. This is essential reading for anyone interested in how to create and share knowledge to the benefit of the millions of people around the world who have been forced to flee their homes.\"-- Provided by publisher.
The intrepid urban coyote: a comparison of bold and exploratory behavior in coyotes from urban and rural environments
Coyotes ( Canis latrans ) are highly adaptable, medium-sized carnivores that now inhabit nearly every large city in the United States and Canada. To help understand how coyotes have adapted to living in urban environments, we compared two ecologically and evolutionarily important behavioral traits (i.e., bold-shy and exploration-avoidance behavior) in two contrasting environments (i.e., rural and urban). Boldness is an individual’s reaction to a risky situation and exploration is an individual’s willingness to explore novel situations. Our results from both tests indicate that urban coyotes are bolder and more exploratory than rural coyotes and that within both populations there are individuals that vary across both spectrums. Bolder behavior in urban coyotes emerged over several decades and we speculate on possible processes (e.g., learning and selection) and site differences that could be playing a role in this behavioral adaptation. We hypothesize that an important factor is how people treat coyotes; in the rural area coyotes were regularly persecuted whereas in the urban area coyotes were rarely persecuted and sometimes positively rewarded to be in close proximity of people. Negative consequences of this behavioral adaptation are coyotes that become bold enough to occasionally prey on pets or attack humans.
Persistence and conspecific observations improve problem-solving abilities of coyotes
Social learning has important ecological and evolutionary consequences but the role of certain factors, such as social rank, neophobia (i.e., avoidance of novel stimuli), persistence, and task-reward association, remain less understood. We examined the role of these factors in social learning by captive coyotes (Canis latrans) via three studies. Study 1 involved individual animals and eliminated object neophobia by familiarizing the subjects to the testing apparatus prior to testing. Studies 2 and 3 used mated pairs to assess social rank, and included object neophobia, but differed in that study 3 decoupled the food reward from the testing apparatus (i.e., altered task-reward association). For all three studies, we compared performance between coyotes that received a demonstration from a conspecific to control animals with no demonstration prior to testing. Coyotes displayed social learning during study 1; coyotes with a demonstrator were faster and more successful at solving the puzzle box but did not necessarily use the same modality as that observed to be successful. In study 2, there was no difference in success between treatment groups but this is likely because only one coyote within each pair was successful so successful coyote results were masked by their unsuccessful mate. In study 3, there was no difference in success between treatment groups; only two coyotes, both dominant, hand-reared males with demonstrators were able to perform the task. However, coyotes with a demonstrator were less neophobic, measured as latency to approach the object, and more persistent, measured as time spent working on the apparatus. Social rank was the best predictor of neophobia and persistence and was also retained in the best model for time to eat inside the apparatus, a post-trial measurement of object neophobia. These results suggest coyotes are capable of social learning for novel tasks but social rank, neophobia, and persistence influence their social-learning capabilities. This study contributes to understanding the mechanisms underlying how animals gain information about their environment.
The evolutionary consequences of human–wildlife conflict in cities
Human–wildlife interactions, including human–wildlife conflict, are increasingly common as expanding urbanization worldwide creates more opportunities for people to encounter wildlife. Wildlife–vehicle collisions, zoonotic disease transmission, property damage, and physical attacks to people or their pets have negative consequences for both people and wildlife, underscoring the need for comprehensive strategies that mitigate and prevent conflict altogether. Management techniques often aim to deter, relocate, or remove individual organisms, all of which may present a significant selective force in both urban and nonurban systems. Management‐induced selection may significantly affect the adaptive or nonadaptive evolutionary processes of urban populations, yet few studies explicate the links among conflict, wildlife management, and urban evolution. Moreover, the intensity of conflict management can vary considerably by taxon, public perception, policy, religious and cultural beliefs, and geographic region, which underscores the complexity of developing flexible tools to reduce conflict. Here, we present a cross‐disciplinary perspective that integrates human–wildlife conflict, wildlife management, and urban evolution to address how social–ecological processes drive wildlife adaptation in cities. We emphasize that variance in implemented management actions shapes the strength and rate of phenotypic and evolutionary change. We also consider how specific management strategies either promote genetic or plastic changes, and how leveraging those biological inferences could help optimize management actions while minimizing conflict. Investigating human–wildlife conflict as an evolutionary phenomenon may provide insights into how conflict arises and how management plays a critical role in shaping urban wildlife phenotypes.
evolution of self-control
Cognition presents evolutionary research with one of its greatest challenges. Cognitive evolution has been explained at the proximate level by shifts in absolute and relative brain volume and at the ultimate level by differences in social and dietary complexity. However, no study has integrated the experimental and phylogenetic approach at the scale required to rigorously test these explanations. Instead, previous research has largely relied on various measures of brain size as proxies for cognitive abilities. We experimentally evaluated these major evolutionary explanations by quantitatively comparing the cognitive performance of 567 individuals representing 36 species on two problem-solving tasks measuring self-control. Phylogenetic analysis revealed that absolute brain volume best predicted performance across species and accounted for considerably more variance than brain volume controlling for body mass. This result corroborates recent advances in evolutionary neurobiology and illustrates the cognitive consequences of cortical reorganization through increases in brain volume. Within primates, dietary breadth but not social group size was a strong predictor of species differences in self-control. Our results implicate robust evolutionary relationships between dietary breadth, absolute brain volume, and self-control. These findings provide a significant first step toward quantifying the primate cognitive phenome and explaining the process of cognitive evolution.
Is Wildlife Going to the Dogs? Impacts of Feral and Free-Roaming Dogs on Wildlife Populations
In human-populated landscapes, dogs (Canis familiaris) are often the most abundant terrestrial carnivore. However, dogs can significantly disrupt or modify intact ecosystems well beyond the areas occupied by people. Few studies have directly quantified the environmental or economic effects of free-roaming and feral dogs. Here, we review wildlife-dog interactions and provide a case study that focuses on interactions documented from our research in Mongolia to underscore the need for studies designed to best determine how dogs affect native wildlife and especially imperiled populations. We suggest additional research, public awareness campaigns, and the exclusion of dogs from critical wildlife habitat. The application of scientific findings to management and enhanced public outreach programs will not only facilitate recovery and maintenance of wildlife populations globally but also has the potential to reduce economic losses.
Interactions with humans shape coyote responses to hazing
Medium and large carnivores coexist with people in urban areas globally, occasionally resulting in negative interactions that prompt questions about how to reduce human-wildlife conflict. Hazing, i.e., scaring wildlife, is frequently promoted as an important non-lethal means for urbanites to reduce conflict but there is limited scientific evidence for its efficacy. We used a population of captive coyotes ( Canis latrans ) to simulate urban human-coyote interactions and subsequent effects of hazing on coyote behavior. Past experiences with humans significantly affected the number of times a coyote approached a human to necessitate hazing. Coyotes that had been hand fed by adults had to be more frequently hazed than coyotes with other or no past experiences with adults. Past experience with children had no impact on the number of hazing events. The number of times a coyote approached an adult or child was reduced across days based on the accumulative number of times hazed, suggesting coyotes learn to avoid behaviors warranting hazing and that this could be used as a non-lethal management tool. However, prior experience and whether the interaction is with an adult or child can alter the outcomes of hazing and must be considered in determining the efficacy of hazing programs.
Human Disturbance Influences Reproductive Success and Growth Rate in California Sea Lions (Zalophus californianus)
The environment is currently undergoing changes at both global (e.g., climate change) and local (e.g., tourism, pollution, habitat modification) scales that have the capacity to affect the viability of animal and plant populations. Many of these changes, such as human disturbance, have an anthropogenic origin and therefore may be mitigated by management action. To do so requires an understanding of the impact of human activities and changing environmental conditions on population dynamics. We investigated the influence of human activity on important life history parameters (reproductive rate, and body condition, and growth rate of neonate pups) for California sea lions (Zalophus californianus) in the Gulf of California, Mexico. Increased human presence was associated with lower reproductive rates, which translated into reduced long-term population growth rates and suggested that human activities are a disturbance that could lead to population declines. We also observed higher body growth rates in pups with increased exposure to humans. Increased growth rates in pups may reflect a density dependent response to declining reproductive rates (e.g., decreased competition for resources). Our results highlight the potentially complex changes in life history parameters that may result from human disturbance, and their implication for population dynamics. We recommend careful monitoring of human activities in the Gulf of California and emphasize the importance of management strategies that explicitly consider the potential impact of human activities such as ecotourism on vertebrate populations.
Confirmation of herbicide resistance mutations Trp574Leu, ΔG210, and EPSPS gene amplification and control of multiple herbicide-resistant Palmer amaranth (Amaranthus palmeri) with chlorimuron-ethyl, fomesafen, and glyphosate
Herbicide-resistant weeds, especially Palmer amaranth (Amaranthus palmeri S. Watson), are problematic in row-crop producing areas of the United States. The objectives of this study were to determine if chlorimuron-ethyl, fomesafen, and glyphosate applied separately and in mixtures control A. palmeri and confirm the presence of various genotypes surviving two- and three-way herbicide mixtures. Fifteen percent of A. palmeri treated with the three-way herbicide mixture survived. Mixing fomesafen with chlorimuron-ethyl or fomesafen with glyphosate to create a two-way mixture reduced A. palmeri survival 22 to 24% and 60 to 62% more than glyphosate and chlorimuron-ethyl alone, respectively. Previously characterized mutations associated with A. palmeri survival to chlorimuron-ethyl, fomesafen, and glyphosate Trp574Leu, a missing glycine codon at position 210 of the PPX2L gene (ΔG210), and 5-enolpyruvylshikimate-3-phosphase synthase (EPSPS) gene amplification; respectively, were present in surviving plants. However, 37% of plants treated with chlorimuron-ethyl did not contain heterozygous or homozygous alleles for the Trp574Leu mutation, suggesting alternative genotypes contributed to plant survival. All surviving A. palmeri treated with fomesafen or glyphosate possessed genotypes previously documented to confer resistance. Indiana soybean [Glycine max (L.) Merr] fields infested with A. palmeri possessed diverse genotypes and herbicide surviving plants are likely to produce seed and spread if alternative control measures are not implemented.
The consequences of predators without prey
Rapid and ongoing environmental change is leading to scenarios where marine and terrestrial predators are persisting without prey, either by scavenging or using anthropogenic foods. Despite investigations into the effects of predator presence or absence on prey behavior and ecology, little research has assessed the effect of prey absence on predators. Here, we synthesize research on scavenging and the use of anthropogenic resources by marine and terrestrial predators; hypothesize how the use of these resources may change predator behavior with respect to their social structure, space use, life history, and individual behavioral traits; and illustrate how these changes are likely to have cascading effects through ecosystems. The prevalence of predators persisting without prey will almost certainly change in the future due to altered availability of anthropogenic foods, scavenging opportunities, and natural prey. We discuss areas of needed research and the relevance of our findings to both the conservation and ecology of predators and management of human–wildlife conflict.