Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
10,130
result(s) for
"Yu, Guang"
Sort by:
Luke Him Sau, architect : China's missing modern
\"Luke Him Sau/Lu Qianshou (1904-1991) is best known internationally and in China as the architect of the iconic Bank of China Headquarters in Shanghai. One of the first Chinese students to be trained at the Architectural Association in London in the late 1920s, Luke's long, prolific and highly successful career in China and Hong Kong offers unique insights into an extraordinary period of Chinese political turbulence that scuppered the professional prospects and historical recognition of so many of his colleagues. Global interest in China has risen exponentially in recent times, creating an appetite for the country's history and culture. This book satiates this by providing a highly engaging and visual account of China's 20th-century architecture through the lens of one of the country's most distinguished yet overlooked designers. It features over 250 new colour photographs by Edward Denison of Luke's buildings and original archive material\"--Provided by publisher.
Low-Frequency Divergence and Quantum Geometry of the Bulk Photovoltaic Effect in Topological Semimetals
by
Guo, Guang-Yu
,
Ahn, Junyeong
,
Nagaosa, Naoto
in
Antiferromagnetism
,
Carrier density
,
Cellular communication
2020
We study the low-frequency properties of the bulk photovoltaic effect in topological semimetals. The bulk photovoltaic effect is a nonlinear optical effect that generates dc photocurrents under uniform irradiation, which is allowed by noncentrosymmetry. It is a promising mechanism for a terahertz photodetection based on topological semimetals. Here, we systematically investigate the low-frequency behavior of the second-order optical conductivity in point-node semimetals. Through symmetry and power-counting analysis, we show that Dirac and Weyl points with tilted cones show the leading low-frequency divergence. In particular, we find new divergent behaviors of the conductivity of Dirac and Weyl points under circularly polarized light, where the conductivity scales asω−2andω−1near the gap-closing point in two and three dimensions, respectively. We provide a further perspective on the low-frequency bulk photovoltaic effect by revealing the complete quantum geometric meaning of the second-order optical conductivity tensor. The bulk photovoltaic effect has two origins, which are the transition of electron position and the transition of electron velocity during the optical excitation, and the resulting photocurrents are, respectively, called the shift current and the injection current. Based on an analysis of two-band models, we show that the injection current is controlled by the quantum metric and Berry curvature, whereas the shift current is governed by the Christoffel symbols near the gap-closing points in semimetals. Finally, for further demonstrations of our theory beyond simple two-band models, we perform first-principles calculations on the shift and injection photocurrent conductivities as well as geometric quantities of antiferromagneticMnGeO3and ferromagnetic PrGeAl, respectively, as representatives of real magnetic Dirac and Weyl semimetals. Our calculations reveal gigantic peaks in many nonvanishing elements of photoconductivity tensors below a photon energy of about 0.2 eV in bothMnGeO3and PrGeAl. In particular, we show theω−1enhancement of the shift conductivity tensors due to the divergent behavior of the geometric quantities near the Dirac and Weyl points as well as slightly gapped topological nodes. Moreover, the low-frequency bulk photovoltaic effect is tunable by carrier doping and magnetization orientation rotation. Our work brings new insights into the structure of nonlinear optical responses as well as the design of semimetal-based terahertz photodetectors.
Journal Article
Innovation and challenges of artificial intelligence technology in personalized healthcare
2024
As the burgeoning field of Artificial Intelligence (AI) continues to permeate the fabric of healthcare, particularly in the realms of patient surveillance and telemedicine, a transformative era beckons. This manuscript endeavors to unravel the intricacies of recent AI advancements and their profound implications for reconceptualizing the delivery of medical care. Through the introduction of innovative instruments such as virtual assistant chatbots, wearable monitoring devices, predictive analytic models, personalized treatment regimens, and automated appointment systems, AI is not only amplifying the quality of care but also empowering patients and fostering a more interactive dynamic between the patient and the healthcare provider. Yet, this progressive infiltration of AI into the healthcare sphere grapples with a plethora of challenges hitherto unseen. The exigent issues of data security and privacy, the specter of algorithmic bias, the requisite adaptability of regulatory frameworks, and the matter of patient acceptance and trust in AI solutions demand immediate and thoughtful resolution .The importance of establishing stringent and far-reaching policies, ensuring technological impartiality, and cultivating patient confidence is paramount to ensure that AI-driven enhancements in healthcare service provision remain both ethically sound and efficient. In conclusion, we advocate for an expansion of research efforts aimed at navigating the ethical complexities inherent to a technology-evolving landscape, catalyzing policy innovation, and devising AI applications that are not only clinically effective but also earn the trust of the patient populace. By melding expertise across disciplines, we stand at the threshold of an era wherein AI's role in healthcare is both ethically unimpeachable and conducive to elevating the global health quotient.
Journal Article
Riemannian geometry of resonant optical responses
by
Vishwanath, Ashvin
,
Ahn, Junyeong
,
Nagaosa, Naoto
in
639/624/400/385
,
639/766/119/995
,
Atomic
2022
The geometry of quantum states is well established as a basis for understanding the response of electronic systems to static electromagnetic fields, as exemplified by the theory of the quantum and anomalous Hall effects. However, it has been challenging to relate quantum geometry to resonant optical responses. The main obstacle is that optical transitions involve a pair of states, whereas existing geometrical properties are defined for a single state. As a result, a concrete geometric understanding of optical responses has so far been limited to two-level systems, where the Hilbert space is completely determined by a single state and its orthogonal complement. Here, we construct a general theory of Riemannian geometry for resonant optical processes by identifying transition dipole moment matrix elements as tangent vectors. This theory applies to arbitrarily high-order responses, suggesting that optical responses can generally be thought of as manifestations of the Riemannian geometry of quantum states. We use our theory to show that third-order photovoltaic Hall effects are related to the Riemann curvature tensor and demonstrate an experimentally accessible regime where they dominate the response.
The modern understanding of quantum transport relies on geometric concepts such as the Berry phase. The geometric approach has now been extended to the theory of optical transitions.
Journal Article
Hybrid cellular membrane nanovesicles amplify macrophage immune responses against cancer recurrence and metastasis
2020
Effectively activating macrophages against cancer is promising but challenging. In particular, cancer cells express CD47, a ‘don’t eat me’ signal that interacts with signal regulatory protein alpha (SIRPα) on macrophages to prevent phagocytosis. Also, cancer cells secrete stimulating factors, which polarize tumor-associated macrophages from an antitumor M1 phenotype to a tumorigenic M2 phenotype. Here, we report that hybrid cell membrane nanovesicles (known as hNVs) displaying SIRPα variants with significantly increased affinity to CD47 and containing M2-to-M1 repolarization signals can disable both mechanisms. The hNVs block CD47-SIRPα signaling axis while promoting M2-to-M1 repolarization within tumor microenvironment, significantly preventing both local recurrence and distant metastasis in malignant melanoma models. Furthermore, by loading a stimulator of interferon genes (STING) agonist, hNVs lead to potent tumor inhibition in a poorly immunogenic triple negative breast cancer model. hNVs are safe, stable, drug loadable, and suitable for genetic editing. These properties, combined with the capabilities inherited from source cells, make hNVs an attractive immunotherapy.
The application of STING agonists and the blockade of the SIRPα–CD47 signaling axis are emerging immunotherapeutic strategies. Here the authors show that hybrid cellular membrane nanovesicles loaded with a STING agonist or overexpressing high-affinity SIRPα variants can be exploited to promote anti-tumor immune responses.
Journal Article
Common knowledge about Chinese culture
by
China. Guo wu yuan. Qiao wu ban gong shi author
,
Guo jia Han yu guo ji tui guang ling dao xiao zu ban gong shi (China) author
in
National characteristics, Chinese
,
China Civilization
,
China Social life and customs
2012
Traditional Chinese ideology - Traditional virtues of China - Ancient Chinese literature - Science and technology of ancient China - Traditional Chinese art - Chinese cultural relics - Ancient Chinese architecture - Chinese arts and crafts - Chinese folk customs - Life of the Chinese people.
The combination of procalcitonin and C-reactive protein or presepsin alone improves the accuracy of diagnosis of neonatal sepsis: a meta-analysis and systematic review
2018
Background
Sepsis is an important cause of neonatal morbidity and mortality; therefore, the early diagnosis of neonatal sepsis is essential.
Method
Our aim was to compare the diagnostic accuracy of procalcitonin (PCT), C-reactive protein (CRP), procalcitonin combined with C-reactive protein (PCT + CRP) and presepsin in the diagnosis of neonatal sepsis. We searched seven databases to identify studies that met the inclusion criteria. Two independent reviewers performed data extraction. The pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), area under curve (AUC), and corresponding 95% credible interval (95% CI) were calculated by true positive (TP), false positive (FP), false negative (FN), and true negative (TN) classification using a bivariate regression model in STATA 14.0 software. The pooled sensitivity, specificity, PLR, NLR, DOR, AUC, and corresponding 95% CI were the primary outcomes. Secondary outcomes included the sensitivity and specificity in multiple subgroup analyses.
Results
A total of 28 studies enrolling 2661 patients were included in our meta-analysis. The pooled sensitivity of CRP (0.71 (0.63, 0.78)) was weaker than that of PCT (0.85 (0.79, 0.89)), PCT + CRP (0.91 (0.84, 0.95)) and presepsin (0.94 (0.80, 0.99)) and the pooled NLR of presepsin (0.06 (0.02, 0.23)) and PCT + CRP (0.10 (0.05, 0.19)) were less than CRP (0.33 (0.26, 0.42)), and the AUC for presepsin (0.99 (0.98, 1.00)) was greater than PCT + CRP (0.96 (0.93, 0.97)), CRP (0.85 (0.82, 0.88)) and PCT (0.91 (0.89, 0.94)). The results of the subgroup analysis showed that 0.5–2 ng/mL may be the appropriate cutoff interval for PCT. A cut-off value > 10 mg/L for CRP had high sensitivity and specificity.
Conclusions
The combination of PCT and CRP or presepsin alone improves the accuracy of diagnosis of neonatal sepsis. However, further studies are required to confirm these findings.
Journal Article