Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
216 result(s) for "Yu, Guirui"
Sort by:
Stabilization of atmospheric nitrogen deposition in China over the past decade
Increasing atmospheric nitrogen deposition can influence food production, environmental quality and climate change from the regional to global scales. As the largest developing country, China is expected to experience a rapid increase in N deposition. However, the lack of information on dry N deposition limits our understanding of the historical trend of the total N deposition, as well as the main drivers of this trend. Here, we use extensive datasets that include both wet and dry N deposition to evaluate the spatiotemporal variation of N deposition and the changes of its components in China during 1980–2015. Three significant transitions in N deposition in China were observed. First, the total N deposition began to stabilize in 2001–2005, mostly due to a decline in wet NH4+ deposition. Subsequently, a shift to approximately equal wet and dry N deposition occurred in 2011–2015, accompanied by increasing dry deposition. Finally, the contribution of reduced N components in the deposition decreased due to increasing NO3− deposition. These transitions were jointly driven by changes in the socioeconomic structure in China and vigorous controls in N pollution. The three observed important transitions challenge the traditional views about the continuous increase in N deposition in China.Nitrogen deposition in China has been almost constant over the past decade, as decreasing wet deposition has balanced increasing dry deposition, according to analyses of extensive datasets on wet and dry nitrogen depositions in China.
Increased soil organic carbon storage in Chinese terrestrial ecosystems from the 1980s to the 2010s
Soil stores a large amount of the terrestrial ecosystem carbon (C) and plays an important role in maintaining global C balance. However, very few studies have addressed the regional patterns of soil organic carbon (SOC) storage and the main factors influencing its changes in Chinese terrestrial ecosystems, especially using field measured data. In this study, we collected information on SOC storage in main types of ecosystems (including forest, grassland, cropland, and wetland) across 18 regions in China during the 1980s (from the Second National Soil Survey of China, SNSSC) and the 2010s (from studies published between 2004 and 2014), and evaluated its changing trends during these 30 years. The SOC storage (0–100 cm) in Chinese terrestrial ecosystems was 83.46 ± 11.89 Pg C in the 1980s and 86.50 ± 8.71 Pg C in the 2010s, and the net increase over the 30 years was 3.04 ± 1.65 Pg C, with an overall rate of 0.101 ± 0.055 Pg C yr –1 . This increase was mainly observed in the topsoil (0–20 cm). Forests, grasslands, and croplands SOC storage increased 2.52 ± 0.77, 0.40 ± 0.78, and 0.07 ± 0.31 Pg C, respectively, which can be attributed to the several ecological restoration projects and agricultural practices implemented. On the other hand, SOC storage in wetlands declined 0.76 ± 0.29 Pg C, most likely because of the decrease of wetland area and SOC density. Combining these results with those of vegetation C sink (0.100 Pg C yr –1 ), the net C sink in Chinese terrestrial ecosystems was about 0.201 ± 0.061 Pg C yr –1 , which can offset 14.85%–27.79% of the fossil fuel C emissions from the 1980s to the 2010s. These first estimates of soil C sink based on field measured data supported the premise that China’s terrestrial ecosystems have a large C sequestration potential, and further emphasized the importance of forest protection and reforestation to increase SOC storage capacity.
Opposing shifts in distributions of chlorophyll concentration and composition in grassland under warming
Global warming has significantly altered the distribution and productivity of vegetation owing to shifts in plant functional traits. However, chlorophyll adaptations—good representative of plant production—in grasslands have not been investigated on a large scale, hindering ecological predictions of climate change. Three grassland transects with a natural temperature gradient were designed in the Tibetan, Mongolian, and Loess Plateau to describe the changes in chlorophyll under different warming scenarios for 475 species. In the three plateaus, variations and distributions of species chlorophyll concentration and composition were compared. The results showed that the means of chlorophyll concentration and composition (chlorophyll a/ b ) increased with the mean annual temperature. Still, their distributions shifted in opposite manners: chlorophyll concentration was distributed in a broader but more differential manner, while chlorophyll composition was distributed in a narrower but more uniform manner. Compared to chlorophyll concentration, chlorophyll composition was more conservative, with a slight shift in distribution. At the regional level, the chlorophyll concentration and composition depend on the limitations of the local climate or resources. The results implied that warming might drive shifts in grassland chlorophyll distribution mainly by alternations in species composition. Large-scale chlorophyll investigations will be useful for developing prediction techniques.
Leaf morphological and anatomical traits from tropical to temperate coniferous forests: Mechanisms and influencing factors
Leaf traits may reflect the adaptation mechanisms of plants to the environment. In this study, we investigated leaf morphological and anatomical traits in nine cold-temperate to tropical forests along a 4,200-km transect to test how they vary across latitudinal gradients. The results showed that leaf dry weight decreased ( P  < 0.05), while specific leaf area (SLA) increased ( P  < 0.05) with increasing latitude. Stomatal length and stomatal density did not change significantly, while stomatal pore area index increased ( P  < 0.05) with increasing latitude. The palisade-leaf mesophyll thickness ratio increased ( P  < 0.01), while the spongy-leaf mesophyll thickness ratio decreased, with increasing latitude ( P  < 0.01). Climate and leaf nutrients were the main factors that regulated leaf morphological and anatomical traits. Furthermore, we identified positive correlations between leaf area and leaf dry weight, leaf thickness and palisade mesophyll thickness, but negative correlations between stomatal length and stomatal density (all P  < 0.01). The observed negative correlations represented the adaptive mechanisms of leaves through their morphological and anatomical traits. These findings provided new insights into the responses of leaf morphological and anatomical traits to climate changes and important parameters for future model optimization.
Relationships of stomatal morphology to the environment across plant communities
The relationship between stomatal traits and environmental drivers across plant communities has important implications for ecosystem carbon and water fluxes, but it has remained unclear. Here, we measure the stomatal morphology of 4492 species-site combinations in 340 vegetation plots across China and calculate their community-weighted values for mean, variance, skewness, and kurtosis. We demonstrate a trade-off between stomatal density and size at the community level. The community-weighted mean and variance of stomatal density are mainly associated with precipitation, while that of stomatal size is mainly associated with temperature, and the skewness and kurtosis of stomatal traits are less related to climatic and soil variables. Beyond mean climate variables, stomatal trait moments also vary with climatic seasonality and extreme conditions. Our findings extend the knowledge of stomatal trait–environment relationships to the ecosystem scale, with applications in predicting future water and carbon cycles. The relationship between stomatal traits and environmental drivers across plant communities has important implications for ecosystem fluxes. Here, the authors explore community-scale stomatal trait-environment relationships, which are important for predicting future water and carbon cycles.
High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region
Temperate- and high-latitude forests have been shown to contribute a carbon sink in the Northern Hemisphere, but fewer studies have addressed the carbon balance of the subtropical forests. In the present study, we integrated eddy covariance observations established in the 1990s and 2000s to show that East Asian monsoon subtropical forests between 20°N and 40°N represent an average net ecosystem productivity (NEP) of 362 ± 39 g C m ⁻² yr ⁻¹ (mean ± 1 SE). This average forest NEP value is higher than that of Asian tropical and temperate forests and is also higher than that of forests at the same latitudes in Europe–Africa and North America. East Asian monsoon subtropical forests have comparable NEP to that of subtropical forests of the southeastern United States and intensively managed Western European forests. The total NEP of East Asian monsoon subtropical forests was estimated to be 0.72 ± 0.08 Pg C yr ⁻¹, which accounts for 8% of the global forest NEP. This result indicates that the role of subtropical forests in the current global carbon cycle cannot be ignored and that the regional distributions of the Northern Hemisphere's terrestrial carbon sinks are needed to be reevaluated. The young stand ages and high nitrogen deposition, coupled with sufficient and synchronous water and heat availability, may be the primary reasons for the high NEP of this region, and further studies are needed to quantify the contribution of each underlying factor.
Global inorganic nitrogen dry deposition inferred from ground- and space-based measurements
Atmospheric nitrogen (N) dry deposition is an important component in total N deposition. However, uncertainty exists in the assessment of global dry deposition. Here, we develop empirical models for estimating ground N concentrations using NO 2 satellite measurements from the Ozone Monitoring Instrument (OMI) and ground measurements from 555 monitoring sites. Global patterns and trends in the fluxes of NO 2 , HNO 3 , NH 4 + and NO 3 − were assessed for 2005–2014. Moreover, we estimated global NH 3 dry deposition directly using data from 267 monitoring sites. Our results showed that East Asia, the United States and Europe were important regions of N deposition and the total annual amount of global inorganic N deposition was 34.26 Tg N. The dry deposition fluxes were low in Africa and South America, but because of their large area, the total amounts in these regions were comparable to those in Europe and North America. In the past decade, the western United States and Eurasia, particularly eastern China, experienced the largest increases in dry deposition, whereas the eastern United States, Western Europe and Japan experienced clear decreases through control of NO x and NH 3 emissions. These findings provide a scientific background for policy-makers and future research into global changes.
Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity
Atmospheric nitrogen (N) deposition, an important component in the global N cycle, has increased sharply in recent decades in China. Here, we constructed national-scale inorganic N wet deposition (N dep ) patterns in China based on data from 280 observational sites and analysed the effects of anthropogenic sources and precipitation on N dep . Our results showed that the mean N dep over China increased approximately 25%, from 11.11 kg ha −1 a −1 in the 1990s to 13.87 in the 2000s. N dep was highest over southern China and exhibited a decreasing gradient from southern to western and northern China. The decadal difference in N dep between the 1990s and 2000s was primarily caused by increases in energy consumption and N fertiliser use. Our findings conformed that anthropogenic activities were the main reason for the N dep increase and provide a scientific background for studies on ecological effects of N deposition in China.
Changing patterns of global nitrogen deposition driven by socio-economic development
Advances in manufacturing and trade have reshaped global nitrogen deposition patterns, yet their dynamics and drivers remain unclear. Here, we compile a comprehensive global nitrogen deposition database spanning 1977–2021, aggregating 52,671 site-years of data from observation networks and published articles. This database show that global nitrogen deposition to land is 92.7 Tg N in 2020. Total nitrogen deposition increases initially, stabilizing after peaking in 2015. Developing countries at low and middle latitudes emerge as new hotspots. The gross domestic product per capita is found to be highly and non-linearly correlated with global nitrogen deposition dynamic evolution, and reduced nitrogen deposition peaks higher and earlier than oxidized nitrogen deposition. Our findings underscore the need for policies that align agricultural and industrial progress to facilitate the peak shift or reduction of nitrogen deposition in developing countries and to strengthen measures to address NH 3 emission hotspots in developed countries. Zhu et al. compile a global N deposition database and find a shift in N deposition, with developing countries emerging as new hotspots. A strong link between economic development and N dynamics is identified, with important policy implications.
Global pattern and controls of soil microbial metabolic quotient
The microbial metabolic quotient (MMQ), microbial respiration per unit of biomass, is a fundamental factor controlling heterotrophic respiration, the largest carbon flux in soils. The magnitude and controls of MMQ at regional scale remain uncertain. We compiled a comprehensive data set of MMQ to investigate the global patterns and controls of MMQ in top 30 cm soils. Published MMQ values, generally measured in laboratory microcosms, were adjusted on ambient soil temperature using long-term (30 yr) average site soil temperature and a Q₁₀ = 2. The area-weighted global average of MMQ_Soil is estimated as 1.8 (1.5–2.2) (95% confidence interval) μmol C·h⁻¹·mmol⁻¹ microbial biomass carbon (MBC) with substantial variations across biomes and between cropland and natural ecosystems. Variation was most closely associated with biological factors, followed by edaphic and meteorological parameters. MMQ_Soil was greatest in sandy clay and sandy clay loam and showed a pH maximum of 6.7 ± 0.1 (mean ± se). At large scale, MMQ_Soil varied with latitude and mean annual temperature (MAT), and was negatively correlated with microbial N:P ratio, supporting growth rate theory. These trends led to large differences in MMQ_Soil between natural ecosystems and cropland. When MMQ was adjusted to 11°C (MMQ_Ref), the global MAT in the top 30 cm of soils, the area-weighted global averages of MMQ_Ref was 1.5 (1.3–1.8) μmol C-mmol MBC⁻¹·h⁻¹. The values, trends, and controls of MMQ_Soil add to our understanding of soil microbial influences on soil carbon cycling and could be used to represent microbial activity in global carbon models.