Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
14,709
result(s) for
"Yu, Hai"
Sort by:
Reconciling the Diversity and Uniformity of Galactic Rotation Curves with Self-Interacting Dark Matter
by
Yu, Hai-Bo
,
Ren, Tao
,
Kwa, Anna
in
Astronomical models
,
Celestial bodies
,
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
2019
Galactic rotation curves exhibit diverse behavior in the inner regions while obeying an organizing principle; i.e., they can be approximately described by a radial acceleration relation or the modified Newtonian dynamics phenomenology. We analyze the rotation curve data from the SPARC sample and explicitly demonstrate that both the diversity and uniformity are naturally reproduced in a hierarchical structure formation model with the addition of dark matter self-interactions. The required concentrations of the dark matter halos are fully consistent with the concentration-mass relation predicted by the Planck cosmological model. The inferred stellar mass-to-light (3.6μm) ratios scatter around0.5M⊙/L⊙, as expected from population synthesis models, leading to a tight radial acceleration relation and a baryonic Tully-Fisher relation. The inferred stellar-halo mass relation is consistent with the expectations from abundance matching. These results provide compelling arguments in favor of the idea that the inner halos of galaxies are thermalized due to dark matter self-interactions.
Journal Article
Traumatic brain injury in China
by
Gao, Guo-Yi
,
Huang, Xian-Jian
,
Jiang, Ji-Yao
in
Clinical trials
,
Epidemiology
,
Intensive care units
2019
China has more patients with traumatic brain injury (TBI) than most other countries in the world, making this condition a major public health concern. Population-based mortality of TBI in China is estimated to be approximately 13 cases per 100 000 people, which is similar to the rates reported in other countries. The implementation of various measures, such as safety legislation for road traffic, establishment of specialised neurosurgical intensive care units, and the development of evidence-based guidelines, have contributed to advancing prevention and care of patients with TBI in China. However, many challenges remain, which are augmented further by regional differences in TBI care. High-level care, such as intracranial pressure monitoring, is not universally available yet. In the past 30 years, the quality of TBI research in China has substantially improved, as evidenced by an increasing number of clinical trials done. The large number of patients with TBI and specialised trauma centres offer unique opportunities for TBI research in China. Furthermore, the formation and development of research collaborations between China and international groups are considered essential to advancing the quality of TBI care and research in China, and to improve quality of life in patients with this condition.
Journal Article
Reduced compensatory effects explain the nitrogen-mediated reduction in stability of an alpine meadow on the Tibetan Plateau
2015
Many ecosystems are facing strong perturbations such as nitrogen (N) fertilization, which can greatly alter ecosystem stability via different mechanisms. Understanding such mechanisms is critical for predicting how ecosystems will function in the face of global changes.
We examined how 8 yr of N fertilization with different N rates (no N addition or N addition at a low, medium or high rate) and different forms of N (ammonium, nitrate or ammonium nitrate) affected the temporal stability of the aboveground biomass of an alpine meadow on the Tibetan Plateau, and tested four mechanisms (diversity effect, mean-variance scaling, compensatory dynamics and dominance effect) that may alter stability.
Compared with the control (no N addition), a high N rate did not affect the diversity effect, the mean-variance scaling or the dominance effect, but significantly decreased compensatory dynamics among species and functional groups, which contributed to the reduction in community stability of the alpine meadow. The form of N did not affect any of the four mechanisms and thus did not affect community stability.
A high N rate can change community stability by altering compensatory dynamics, whereas the form of N may not have an effect.
Journal Article
Dark matter self-interactions from the internal dynamics of dwarf spheroidals
2018
Dwarf spheroidal galaxies provide well-known challenges to the standard cold and collisionless dark matter scenario
1
,
2
: the too-big-to-fail problem (namely the mismatch between the observed mass enclosed within their half-light radius
3
,
4
and cold dark matter
N
-body predictions
5
,
6
) and the hints for inner constant-density cores
7
–
10
. While these controversies may be alleviated by baryonic physics and environmental effects
11
–
15
, revisiting the standard lore of cold and collisionless dark matter remains an intriguing possibility. Self-interacting dark matter
16
,
17
may be the successful proposal to such a small-scale crisis
18
,
19
. Self-interactions correlate dark matter and baryon distributions, allowing for constant-density cores in low-surface-brightness galaxies
20
–
23
. Here, we perform a data-driven study of the too-big-to-fail problem of Milky Way dwarf spheroidals within the self-interacting dark matter paradigm. We find a good description of their stellar kinematics and compatibility with the concentration–mass relation from the pure cold dark matter simulation in ref.
24
. Within this concentration–mass relation, a subset of Milky Way dwarfs are well fitted by cross-sections of 0.5–3.0 cm
2
g
−1
, while others point to values greater than 10 cm
2
g
−1
.
A data-driven study of the too-big-to-fail problem of Milky Way dwarf spheroidals within the self-interacting dark matter paradigm finds a good description of their stellar kinematics and compatibility with the concentration–mass relation of pure cold dark matter simulations.
Journal Article
Physiological integration can increase competitive ability in clonal plants if competition is patchy
by
Alpert, Peter
,
Wang, Pu
,
Yu, Fei-Hai
in
Biological competition
,
Biomass
,
Biomedical and Life Sciences
2021
Physiological integration of connected plants of the same clone, or ramets, often increases clonal fitness when ramets differ in resource supply. However, review of the literature found that no study has directly tested the hypothesis that integration can increase the ability of clones to compete against other species. To test this, we grew two-ramet clonal fragments of the stoloniferous, perennial herb Fragaria chiloensis in which none, one, or both of the ramets had neighbors of a naturally cooccurring, dominant grass, Bromus carinatus, and connections between ramets were either severed to prevent integration or left intact. We also grew four-ramet fragments in which all ramets had neighbors and connections were severed or intact. Severance decreased the final leaf mass and area of two-ramet fragments by 25% and their final total mass by 15% when just one ramet was grown with B. carinatus. Severance had no significant effect on the total mass of fragments when none or all of the ramets were grown with the grass. This provides the first direct evidence that physiological integration can increase the competitive ability of clonal plant species, though only when competition is spatially heterogeneous. Integration may thus enable plant clones to grow into plant communities and to compete within communities with fine-scale disturbance. However, integration may not increase the competitive ability of clonal plants within uniformly dense communities of taller species.
Journal Article
Natural Enantiomers: Occurrence, Biogenesis and Biological Properties
by
Zhang, Hua
,
Yu, Jin-Hai
,
Capon, Robert J.
in
Animals
,
biogenesis
,
Biological Products - chemistry
2022
The knowledge that natural products (NPs) are potent and selective modulators of important biomacromolecules (e.g., DNA and proteins) has inspired some of the world’s most successful pharmaceuticals and agrochemicals. Notwithstanding these successes and despite a growing number of reports on naturally occurring pairs of enantiomers, this area of NP science still remains largely unexplored, consistent with the adage “If you don’t seek, you don’t find”. Statistically, a rapidly growing number of enantiomeric NPs have been reported in the last several years. The current review provides a comprehensive overview of recent records on natural enantiomers, with the aim of advancing awareness and providing a better understanding of the chemical diversity and biogenetic context, as well as the biological properties and therapeutic (drug discovery) potential, of enantiomeric NPs.
Journal Article
Potential Roles of Soil Microorganisms in Regulating the Effect of Soil Nutrient Heterogeneity on Plant Performance Review
by
Roiloa, Sergio
,
Yu, Fei-Hai
,
Adomako, Michael Opoku
in
arbuscular mycorrhizal fungi (AMF)
,
Biodiversity
,
Biomass
2022
The spatially heterogeneous distribution of soil nutrients is ubiquitous in terrestrial ecosystems and has been shown to promote the performance of plant communities, influence species coexistence, and alter ecosystem nutrient dynamics. Plants interact with diverse soil microbial communities that lead to an interdependent relationship (e.g., symbioses), driving plant community productivity, belowground biodiversity, and soil functioning. However, the potential role of the soil microbial communities in regulating the effect of soil nutrient heterogeneity on plant growth has been little studied. Here, we highlight the ecological importance of soil nutrient heterogeneity and microorganisms and discuss plant nutrient acquisition mechanisms in heterogeneous soil. We also examine the evolutionary advantages of nutrient acquisition via the soil microorganisms in a heterogeneous environment. Lastly, we highlight a three-way interaction among the plants, soil nutrient heterogeneity, and soil microorganisms and propose areas for future research priorities. By clarifying the role of soil microorganisms in shaping the effect of soil nutrient heterogeneity on plant performance, the present study enhances the current understanding of ecosystem nutrient dynamics in the context of patchily distributed soil nutrients.
Journal Article
Enlightening the taxonomy darkness of human gut microbiomes with a cultured biobank
2021
Background
In gut microbiome studies, the cultured gut microbial resource plays essential roles, such as helping to unravel gut microbial functions and host-microbe interactions. Although several major studies have been performed to elucidate the cultured human gut microbiota, up to 70% of the Unified Human Gastrointestinal Genome species have not been cultured to date. Large-scale gut microbial isolation and identification as well as availability to the public are imperative for gut microbial studies and further characterizing human gut microbial functions.
Results
In this study, we constructed a human Gut Microbial Biobank (hGMB; homepage:
hgmb.nmdc.cn
) through the cultivation of 10,558 isolates from 31 sample mixtures of 239 fresh fecal samples from healthy Chinese volunteers, and deposited 1170 strains representing 400 different species in culture collections of the International Depository Authority for long-term preservation and public access worldwide. Following the rules of the International Code of Nomenclature of Prokaryotes, 102 new species were characterized and denominated, while 28 new genera and 3 new families were proposed. hGMB represented over 80% of the common and dominant human gut microbial genera and species characterized from global human gut 16S rRNA gene amplicon data (
n
= 11,647) and cultured 24 “most-wanted” and “medium priority” taxa proposed by the Human Microbiome Project. We in total sequenced 115 genomes representing 102 novel taxa and 13 previously known species. Further in silico analysis revealed that the newly sequenced hGMB genomes represented 22 previously uncultured species in the Unified Human Gastrointestinal Genome (UHGG) and contributed 24 representatives of potentially “dark taxa” that had not been discovered by UHGG. The nonredundant gene catalogs generated from the hGMB genomes covered over 50% of the functionally known genes (KEGG orthologs) in the largest global human gut gene catalogs and approximately 10% of the “most wanted” functionally unknown proteins in the FUnkFams database.
Conclusions
A publicly accessible human Gut Microbial Biobank (hGMB) was established that contained 1170 strains and represents 400 human gut microbial species. hGMB expands the gut microbial resources and genomic repository by adding 102 novel species, 28 new genera, 3 new families, and 115 new genomes of human gut microbes.
6-6epGnHGpob5sGsfPZJHQ
Video abstract
Journal Article
Application of hyperspectral remote sensing for supplementary investigation of polymetallic deposits in Huaniushan ore region, northwestern China
2021
A gold–silver–lead–zinc polymetallic ore was selected in Huaniushan, Gansu Province as the study area. Hyperspectral aerial images as the primary information source, ground spectrum tests, and sampling analysis were used as auxiliary techniques. They were combined with large-scale mineral and geological maps and other high-resolution satellite remote sensing images. Hyperspectral remote sensing classification identification and quantitative analysis methods were used to study the main mineral resources and rock mass occurrence. Finally, deposit distribution information was extracted and validated. The results showed that the effective classification methods by hyperspectral images were spectral angle mapping, minimum noise fraction transform, and mixed tuned matched filtering. Based on the ground survey, combined with sampling analysis, the accuracy of classification was 80%. The recognition rate of the main ore body—the iron-manganese cap lead–zinc oxide ore—was as high as 81%. This research showed that hyperspectral remote sensing in this mining area has excellent demonstration effects and is worth completing and supplementing original mineral and geological maps. The targets are important areas for detailed follow-up on mineral resource exploration.
Journal Article
Invasive alien plants benefit more from clonal integration in heterogeneous environments than natives
2017
What confers invasive alien plants a competitive advantage over native plants remains open to debate. Many of the world’s worst invasive alien plants are clonal and able to share resources within clones (clonal integration), particularly in heterogeneous environments. Here, we tested the hypothesis that clonal integration benefits invasive clonal plants more than natives and thus confers invasives a competitive advantage.
Weselected five congeneric and naturally co-occurring pairs of invasive alien and native clonal plants in China, and grew pairs of connected and disconnected ramets under heterogeneous light, soil nutrient and water conditions that are commonly encountered by alien plants during their invasion into new areas.
Clonal integration increased biomass of all plants in all three heterogeneous resource environments. However, invasive plants benefited more from clonal integration than natives. Consequently, invasive plants produced more biomass than natives.
Our results indicate that clonal integration may confer invasive alien clonal plants a competitive advantage over natives. Therefore, differences in the ability of clonal integration could potentially explain, at least partly, the invasion success of alien clonal plants in areas where resources are heterogeneously distributed.
Journal Article