Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
41
result(s) for
"Yu, Kaifan"
Sort by:
Estrogen receptor-α expressing neurons in the ventrolateral VMH regulate glucose balance
Brain glucose-sensing neurons detect glucose fluctuations and prevent severe hypoglycemia, but mechanisms mediating functions of these glucose-sensing neurons are unclear. Here we report that estrogen receptor-α (ERα)-expressing neurons in the ventrolateral subdivision of the ventromedial hypothalamic nucleus (vlVMH) can sense glucose fluctuations, being glucose-inhibited neurons (GI-ERα
vlVMH
) or glucose-excited neurons (GE-ERα
vlVMH
). Hypoglycemia activates GI-ERα
vlVMH
neurons via the anoctamin 4 channel, and inhibits GE-ERα
vlVMH
neurons through opening the ATP-sensitive potassium channel. Further, we show that GI-ERα
vlVMH
neurons preferentially project to the medioposterior arcuate nucleus of the hypothalamus (mpARH) and GE-ERα
vlVMH
neurons preferentially project to the dorsal Raphe nuclei (DRN). Activation of ERα
vlVMH
to mpARH circuit and inhibition of ERα
vlVMH
to DRN circuit both increase blood glucose. Thus, our results indicate that ERα
vlVMH
neurons detect glucose fluctuations and prevent severe hypoglycemia in mice.
Glucose-sensing neurons are found in the ventromedial hypothalamic nucleus (VMH). Here the authors identify the role of estrogen receptor-α expressing neurons in the ventrolateral subdivision of the VMH in sensing hypoglycemia.
Journal Article
A POMC-originated circuit regulates stress-induced hypophagia, depression, and anhedonia
2020
Chronic stress causes dysregulations of mood and energy homeostasis, but the neurocircuitry underlying these alterations remain to be fully elucidated. Here we demonstrate that chronic restraint stress in mice results in hyperactivity of pro-opiomelanocortin neurons in the arcuate nucleus of the hypothalamus (POMCARH neurons) associated with decreased neural activities of dopamine neurons in the ventral tegmental area (DAVTA neurons). We further revealed that POMCARH neurons project to the VTA and provide an inhibitory tone to DAVTA neurons via both direct and indirect neurotransmissions. Finally, we show that photoinhibition of the POMCARH→VTA circuit in mice increases body weight and food intake, and reduces depression-like behaviors and anhedonia in mice exposed to chronic restraint stress. Thus, our results identified a novel neurocircuitry regulating feeding and mood in response to stress.
Journal Article
5-HT recruits distinct neurocircuits to inhibit hunger-driven and non-hunger-driven feeding
2021
Obesity is primarily a consequence of consuming calories beyond energetic requirements, but underpinning drivers have not been fully defined. 5-Hydroxytryptamine (5-HT) neurons in the dorsal Raphe nucleus (5-HTDRN) regulate different types of feeding behavior, such as eating to cope with hunger or for pleasure. Here, we observed that activation of 5-HTDRN to hypothalamic arcuate nucleus (5-HTDRN → ARH) projections inhibits food intake driven by hunger via actions at ARH 5-HT2C and 5-HT1B receptors, whereas activation of 5-HTDRN to ventral tegmental area (5-HTDRN → VTA) projections inhibits non-hunger-driven feeding via actions at 5-HT2C receptors. Further, hunger-driven feeding gradually activates ARH-projecting 5-HTDRN neurons via inhibiting their responsiveness to inhibitory GABAergic inputs; non-hunger-driven feeding activates VTA-projecting 5-HTDRN neurons through reducing a potassium outward current. Thus, our results support a model whereby parallel circuits modulate feeding behavior either in response to hunger or to hunger-independent cues.
Journal Article
Succinate Modulates Intestinal Barrier Function and Inflammation Response in Pigs
by
Zhang, Yanan
,
Li, Xuan
,
Mao, Mingyu
in
intestinal epithelial barrier
,
intestinal inflammation
,
pigs
2019
Succinate is a metabolic intermediate of the tricarboxylic acid (TCA) cycle in all aerobic organisms, and is also a vital microbial metabolite in the gut. Although succinate is known to regulate intestinal metabolism and immune function, its role in the protection of the intestinal epithelial barrier function and inflammation is poorly characterized. In this study, we evaluated the effects of succinate on intestinal epithelial barrier function and inflammation in pigs. Twenty-four growing pigs were distributed into three groups (n = 8) and received either a basal diet (control group) or the same diet supplemented with 0.1% succinate or 1% succinate. The diet supplemented with 1% succinate led to alterations in the intestinal morphology. We confirmed in vitro that 5 mM succinate treatment modulated intestinal epithelial permeability by increased transepithelial electrical resistance (TEER) in intestinal porcine epithelial cell (IPEC)-J2 cells. Furthermore, succinate treatment increased the abundance of tight junction proteins claudin-1, zona occluden (ZO)-1, and ZO-2 in the jejunum in vivo and in vitro. In addition, dietary succinate supplementation promoted the expression of inflammatory cytokines interleukin (IL)-25, IL-10, IL-8, and IL-18 in the jejunum. Taken together, these data identify a novel role of succinate in the modulation of intestinal epithelial barrier function, which may be a nutritional target to improve gut health in animals.
Journal Article
Cecal Infusion of Sodium Propionate Promotes Intestinal Development and Jejunal Barrier Function in Growing Pigs
2019
Short-chain fatty acids (SCFAs) produced by microbial fermentation facilitate the differentiation and proliferation of intestinal epithelium. However, the role of individual SCFAs, such as propionate, on intestinal development is still unclear. In the present study, sixteen barrows fitted with a cecal fistula were randomly divided into two groups for cecal infusion of either saline (control group) or sodium propionate (propionate group). After 28 days, the length and the relative weight of intestinal segments were calculated, the intestinal morphology was assessed, and the expression of tight junction protein was measured using qPCR and Western blotting. Compared to the saline group, the length of the colon was significantly increased in the propionate group (p < 0.05). The jejunal villi length and villi/crypt ratio in the propionate group were significantly higher than in the saline group (p < 0.05). Furthermore, propionate infusion significantly upregulated the mRNA levels of Claudin-4 and the expression of Claudin-1, Claudin-4, and Occludin protein in the jejunal mucosa (p < 0.05). Collectively, these findings revealed that the short-chain fatty acid propionate in the hindgut contributed to intestinal development, and selectively enhanced jejunal tight junction protein expression.
Journal Article
Long-term effects of early antibiotic intervention on blood parameters, apparent nutrient digestibility, and fecal microbial fermentation profile in pigs with different dietary protein levels
2017
Backgroud
This study aimed to determine the effects of early antibiotic intervention (EAI) on subsequent blood parameters, apparent nutrient digestibility, and fecal fermentation profile in pigs with different dietary crude protein (CP) levels. Eighteen litters of piglets (total 212) were randomly allocated to 2 groups and were fed a creep feed diet with or without in-feed antibiotics (olaquindox, oxytetracycline calcium and kitasamycin) from postnatal d 7 to d 42. On d 42, the piglets within the control or antibiotic group were mixed, respectively, and then further randomly assigned to a normal- (20%, 18%, and 14% CP from d 42 to d 77, d 77 to d 120, and d 120 to d 185, respectively) or a low-CP diet (16%, 14%, and 10% CP from d 42 to d 77, d 77 to d 120, and d 120 to d 185, respectively), generating 4 groups. On d 77 (short-term) and d 185 (long-term), serum and fecal samples were obtained for blood parameters, microbial composition and microbial metabolism analysis.
Results
EAI increased (
P
< 0.05) albumin and glucose concentrations in low-CP diet on d 77, and increased (
P
< 0.05) urea concentration in normal-CP diet. On d 185, EAI increased (
P
< 0.05) globulin concentration in normal-CP diets, but decreased glucose concentration. For nutrient digestibility, EAI increased (
P
< 0.05) digestibility of CP on d 77. For fecal microbiota, the EAI as well as low-CP diet decreased (
P
< 0.05)
E. coli
count on d 77. For fecal metabolites, on d 77, EAI decreased (
P
< 0.05) total amines concentration but increased skatole concentration in low-CP diet. On d 185, the EAI increased (
P
< 0.05) putrescine and total amines concentrations in low-CP diets but reduced (
P
< 0.05) in the normal-CP diets. The low-CP diet decreased the concentrations of these compounds.
Conclusions
Collectively, these results indicate that EAI has short-term effects on the blood parameters and fecal microbial fermentation profile. The effects of EAI varied between CP levels, which was characterized by the significant alteration of glucose and putrescine concentration.
Journal Article
The gut microbial metabolite indole-3-aldehyde alleviates impaired intestinal development by promoting intestinal stem cell expansion in weaned piglets
2024
Background
Weaning stress-induced diarrhea is widely recognized as being associated with gut microbiota dysbiosis. However, it has been challenging to clarify which specific intestinal microbiota and their metabolites play a crucial role in the antidiarrhea process of weaned piglets.
Results
In this study, we first observed that piglets with diarrhea exhibited a lower average daily gain and higher diarrhea score, and elevated levels of lipopolysaccharide (LPS) and D-lactate (D-LA) compared to healthy piglets. Subsequently, we analyzed the differences in intestinal microbial composition and metabolite levels between healthy and diarrheal weaned piglets. Diarrheal piglets demonstrated intestinal microbiota dysbiosis, characterized primarily by a higher Firmicutes to Bacteroidota ratio, a deficiency of
Lactobacillus amylovorus
and
Lactobacillus reuteri
, and an increased abundance of
Bacteroides sp.HF-5287
and
Bacteroides thetaiotaomicron
. Functional profiling of the gut microbiota based on Kyoto Encyclopedia of Genes and Genomes (KEGG) data was performed, and the results showed that tryptophan metabolism was the most significantly inhibited pathway in piglets with diarrhea. Most tryptophan metabolites were detected at lower concentrations in diarrheal piglets than in healthy piglets. Furthermore, we explored the effects of dietary indole-3-aldehyde (IAld), a key tryptophan metabolite, on intestinal development and gut barrier function in weaned piglets. Supplementation with 100 mg/kg IAld in the diet increased the small intestine index and improved intestinal barrier function by promoting intestinal stem cell (ISC) expansion in piglets. The promotion of ISC expansion by IAld was also confirmed in porcine intestinal organoids.
Conclusions
These findings revealed that intestinal microbial tryptophan metabolite IAld alleviates impaired intestinal development by promoting ISC expansion in weaned piglets.
Journal Article
Postbiotics from Lactobacillus delbrueckii Alleviate Intestinal Inflammation by Promoting the Expansion of Intestinal Stem Cells in S. Typhimurium-Induced Mice
2024
Previous studies have demonstrated that L. delbrueckii plays beneficial roles in modulating the gut microbiota, enhancing the intestinal barrier, and promoting animal growth. Postbiotics have a similar or even superior effect in protecting intestinal health compared to probiotics due to their excellent stability, extended shelf life, and safety. However, the protective effects and underlying mechanism of postbiotics from L. delbrueckii in intestinal inflammation remain unclear. In this study, we demonstrated the beneficial impact of postbiotics from L. delbrueckii on intestinal health by establishing a S. Typhimurium-induced intestinal inflammation model in mice, which included inactivated bacteria and supernatant. The results revealed that the probiotics and postbiotics from L. delbrueckii increased the survival rate and body weight of S. Typhimurium-induced mice, increased the level of IL-10, and decreased the levels of TNF-α and IL-6, thereby alleviating intestinal inflammation. Meanwhile, treatment with postbiotics decreased the levels of D-LA, DAO, and LPS and promoted the expression of Occludin, ZO-1, and Claudin-1 in the serum and jejunum, suggesting an improvement in intestinal barrier function by postbiotics. Additionally, the postbiotics modulated gut microbial diversity, increased the ratio of Firmicutes and Bacteroidetes, and restored the abundance of Muribaculaceae, Lachnospiraceae_NK4a136_groups, and Alloprevotella in S. Typhimurium-infected mice. Moreover, postbiotics from L. delbrueckii promoted the expansion of intestinal stem cells (ISCs) and increased the numbers of Paneth and Goblet cells. Taken together, these data revealed the beneficial role of postbiotics from L. delbrueckii in protecting against intestinal inflammation by promoting the expansion of ISCs.
Journal Article
Integrative Analysis of Porcine microRNAome during Skeletal Muscle Development
2013
Pig is an important agricultural animal for meat production and provides a valuable model for many human diseases. Functional studies have demonstrated that microRNAs (miRNAs) play critical roles in almost all aspects of skeletal muscle development and disease pathogenesis. To investigate the miRNAs involved in regulating different periods of skeletal muscle development, we herein performed a comprehensive research for porcine microRNAome (miRNAome) during 10 skeletal muscle developmental stages including 35, 49, 63, 77, 91 dpc (days post coitum) and 2, 28, 90, 120, 180 dpn (days postnatal) using Solexa sequencing technology. Our results extend the repertoire of pig miRNAome to 247 known miRNAs processed from 210 pre-miRNAs and 297 candidate novel miRNAs through comparison with known miRNAs in the miRBase. Expression analysis of the 15 most abundant miRNAs in every library indicated that functional miRNAome may be smaller and tend to be highly expressed. A series of muscle-related miRNAs summarized in our study present different patterns between myofibers formation phase and muscle maturation phase, providing valuable reference for investigation of functional miRNAs during skeletal muscle development. Analysis of temporal profiles of miRNA expression identifies 18 novel candidate myogenic miRNAs in pig, which might provide new insight into regulation mechanism mediated by miRNAs underlying muscle development.
Journal Article
SK3 in POMC neurons plays a sexually dimorphic role in energy and glucose homeostasis
by
Li, Yongxiang
,
Scarcelli, Nikolas A.
,
Cai, Xing
in
Analysis
,
Animals
,
Biomedical and Life Sciences
2022
Background
Pro-opiomelanocortin (POMC) neurons play a sexually dimorphic role in body weight and glucose balance. However, the mechanisms for the sex differences in POMC neuron functions are not fully understood.
Results
We detected small conductance calcium-activated potassium (SK) current in POMC neurons. Secondary analysis of published single-cell RNA-Seq data showed that POMC neurons abundantly express SK3, one SK channel subunit. To test whether SK3 in POMC neurons regulates POMC neuron functions on energy and glucose homeostasis, we used a Cre-loxP strategy to delete SK3 specifically from mature POMC neurons. POMC-specific deletion of SK3 did not affect body weight in either male or female mice. Interestingly, male mutant mice showed not only decreased food intake but also decreased physical activity, resulting in unchanged body weight. Further, POMC-specific SK3 deficiency impaired glucose balance specifically in female mice but not in male mice. Finally, no sex differences were detected in the expression of SK3 and SK current in total POMC neurons. However, we found higher SK current but lower SK3 positive neuron population in male POMC neurons co-expressing estrogen receptor α (ERα) compared to that in females.
Conclusion
These results revealed a sexually dimorphic role of SK3 in POMC neurons in both energy and glucose homeostasis independent of body weight control, which was associated with the sex difference of SK current in a subpopulation of POMC + ERα + neurons.
Journal Article