Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
3,840 result(s) for "Yuan, Quan"
Sort by:
بيان الدورة العامة الحادية عشرة للجنة المركزية المنبثقة عن المؤتمر الوطني الثامن للحزب الشيوعي الصيني : (أقر في 12 أغسطس-آب-عام 1966)
عقدت الدورة العامة الحادية عشرة للجنة المركزية المنبثقة عن المؤتمر الوطني الثامن للحزب الشيوعي الصيني في بكين من 1 الى 12 أغسطس (آب) عام 1966، وقد ترأس الدورة العامة الحادية عشرة الرفيق ماو تسي تونغ، وحضرها أعضاء اللجنة المركزية وأعضاؤها المرشحون : وحضرها كذلك الرفاق من مختلف المكاتب الاقليمية للجنة المركزية ومن لجان الحزب في المقاطعات والبلديات والمناطق ذات الحكم الذاتي وأعضاء فرقة الثورة الثقافية للجنة المركزية والرفاق في الدوائر المعنية للجنة المركزية وممثلو المدرسين والطلاب الثوريين في الجامعات والمعاهد العليا بالعاصمة . وقد أقرت الدورة العامة الحادية عشرة بعد المناقشة « قرار اللجنة المركزية للحزب الشيوعي الصيني حول الثورة الثقافية البروليتارية الكبرى » . كما صادقت الدورة العامة بعد النقاش على القرارات السياسية المهمة والاجراءات المهمة فيما يختص بالمسائل الداخلية والخارجية التي أجازها المكتب السياسي للجنة المركزية منذ الدورة العامة العاشرة للجنة المركزية المنبثقة عن المؤتمر الوطني الثامن التي عقدت في سبتمبر (أيلول) عام 1962.
Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration
Nanoporous two-dimensional materials are attractive for ionic and molecular nanofiltration but limited by insufficient mechanical strength over large areas.We report a large-area graphene-nanomesh/single-walled carbon nanotube (GNM/SWNT) hybrid membrane with excellent mechanical strength while fully capturing the merit of atomically thin membranes. The monolayer GNM features high-density, subnanometer pores for efficient transport of water molecules while blocking solute ions or molecules to enable size-selective separation.The SWNT network physically separates the GNM into microsized islands and acts as the microscopic framework to support the GNM, thus ensuring the structural integrity of the atomically thin GNM. The resulting GNM/SWNT membranes show high water permeance and a high rejection ratio for salt ions or organic molecules, and they retain stable separation performance in tubular modules.
Alpha-ketoglutarate ameliorates age-related osteoporosis via regulating histone methylations
Age-related osteoporosis is characterized by the deterioration in bone volume and strength, partly due to the dysfunction of bone marrow mesenchymal stromal/stem cells (MSCs) during aging. Alpha-ketoglutarate (αKG) is an essential intermediate in the tricarboxylic acid (TCA) cycle. Studies have revealed that αKG extends the lifespan of worms and maintains the pluripotency of embryonic stem cells (ESCs). Here, we show that the administration of αKG increases the bone mass of aged mice, attenuates age-related bone loss, and accelerates bone regeneration of aged rodents. αKG ameliorates the senescence-associated (SA) phenotypes of bone marrow MSCs derived from aged mice, as well as promoting their proliferation, colony formation, migration, and osteogenic potential. Mechanistically, αKG decreases the accumulations of H3K9me3 and H3K27me3, and subsequently upregulates BMP signaling and Nanog expression. Collectively, our findings illuminate the role of αKG in rejuvenating MSCs and ameliorating age-related osteoporosis, with a promising therapeutic potential in age-related diseases. α-ketoglutarate is an intermediate of the Krebs Cycle that was recently reported to extend lifespan in C.Elegans. Here, the authors show that administration of α-ketoglutarate to mice reduces age-related bone loss, by ameliorating senescence of bone-marrow derived mesenchymal stem cells.
Saliva: potential diagnostic value and transmission of 2019-nCoV
2019-nCoV epidemic was firstly reported at late December of 2019 and has caused a global outbreak of COVID-19 now. Saliva, a biofluid largely generated from salivary glands in oral cavity, has been reported 2019-nCoV nucleic acid positive. Besides lungs, salivary glands and tongue are possibly another hosts of 2019-nCoV due to expression of ACE2. Close contact or short-range transmission of infectious saliva droplets is a primary mode for 2019-nCoV to disseminate as claimed by WHO, while long-distance saliva aerosol transmission is highly environment dependent within indoor space with aerosol-generating procedures such as dental practice. So far, no direct evidence has been found that 2019-nCoV is vital in air flow for long time. Therefore, to prevent formation of infectious saliva droplets, to thoroughly disinfect indoor air and to block acquisition of saliva droplets could slow down 2019-nCoV dissemination. This review summarizes diagnostic value of saliva for 2019-nCoV, possibly direct invasion into oral tissues, and close contact transmission of 2019-nCoV by saliva droplets, expecting to contribute to 2019-nCoV epidemic control.
Mesenchymal Stem Cell-Based Immunomodulation: Properties and Clinical Application
Mesenchymal stem cells (MSCs) are multipotent stem cells characterized by self-renewal, production of clonal cell populations, and multilineage differentiation. They exist in nearly all tissues and play a significant role in tissue repair and regeneration. Additionally, MSCs possess wide immunoregulatory properties via interaction with immune cells in both innate and adaptive immune systems, leading to immunosuppression of various effector functions. Numerous bioactive molecules secreted by MSCs, particularly cytokines, growth factors, and chemokines, exert autocrine/paracrine effects that modulate the physiological processes of MSCs. These invaluable virtues of MSCs provide new insight into potential treatments for tissue damage and inflammation. In particular, their extensive immunosuppressive properties are being explored for promising therapeutic application in immune disorders. Recently, clinical trials for MSC-mediated therapies have rapidly developed for immune-related diseases following reports from preclinical studies declaring their therapeutic safety and efficacy. Though immunotherapy of MSCs remains controversial, these clinical trials pave the way for their widespread therapeutic application in immune-based diseases. In this review, we will summarize and update the latest research findings and clinical trials on MSC-based immunomodulation.
Traditional uses, phytochemical, pharmacology, quality control and modern applications of two important Chinese medicines from Rosa laevigata Michx.: A review
Rosa laevigata Michx. is an ethnic medicine that have strong biological activities used in the traditional medicine system for the treatment of diabetes, nephropathy, myocardial damage, oxidative damage, liver damage and so on. Currently, The Chinese herb R. laevigata Michx. can be divided into two important medicines: Fructus R. laevigata and Radix R. laevigata , from which approximately 148 chemical components have been isolated, including flavonoids, lignans, polyphenols, steroids, triterpenoids, tannins as well as other components. Pharmacological studies have already confirmed that both of these herbs have antioxidant, anti-inflammatory, antiviral and anti-tumor activities, as well as renal protective, immunomodulatory, lipid-lowering, cardiovascular protective, bacteriostatic, and other pharmacological effects. Toxicological tests and quality control studies revealed the safety and nontoxicity of R. laevigata Michx. Therefore, this paper systematically summarizes the traditional uses, botanical, phytochemical, and pharmacology as well as the quality control and toxicology of Fructus and Radix, which in order to provide a comprehensive reference for its continued research.
An intelligent artificial throat with sound-sensing ability based on laser induced graphene
Traditional sound sources and sound detectors are usually independent and discrete in the human hearing range. To minimize the device size and integrate it with wearable electronics, there is an urgent requirement of realizing the functional integration of generating and detecting sound in a single device. Here we show an intelligent laser-induced graphene artificial throat, which can not only generate sound but also detect sound in a single device. More importantly, the intelligent artificial throat will significantly assist for the disabled, because the simple throat vibrations such as hum, cough and scream with different intensity or frequency from a mute person can be detected and converted into controllable sounds. Furthermore, the laser-induced graphene artificial throat has the advantage of one-step fabrication, high efficiency, excellent flexibility and low cost, and it will open practical applications in voice control, wearable electronics and many other areas. The functional integration of sound generation and detection on a single device is required to assist mute people. Here, the authors demonstrate a graphene-based artificial throat capable of detecting and converting diverse throat vibrations into meaningful sound within a single device.
Recent progress in engineering near-infrared persistent luminescence nanoprobes for time-resolved biosensing/bioimaging
Persistent luminescence nanoprobes (PLNPs) can remain luminescent after ceasing excitation. Due to the ultra-long decay time of persistent luminescence (PersL), autofluorescence interference can be efficiently eliminated by collecting PersL signal after autofluorescence decays completely, thus the imaging contrast and sensing sensitivity can be significantly improved. Since near-infrared (NIR) light shows reduced scattering and absorption coefficient in penetrating biological organs or tissues, near-infrared persistent luminescence nanoprobes (NIR PLNPs) possess deep tissue penetration and offer a bright prospect in the areas of in vivo biosensing/bioimaging. In this review, we firstly summarize the design of different types of NIR PLNPs for biosensing/bioimaging, such as transition metal ions-doped NIR PLNPs, lanthanide ions-doped NIR PLNPs, organic molecules-based NIR PLNPs, and semiconducting polymer self-assembled NIR PLNPs. Notably, organic molecules-based NIR PLNPs and semiconductor self-assembled NIR PLNPs, for the first time, were introduced to the review of PLNPs. Secondly, the effects of different types of charge carriers on NIR PersL and luminescence decay of NIR PLNPs are significantly emphasized so as to build up an in-depth understanding of their luminescence mechanism. It includes the regulation of valence band and conduction band of different host materials, alteration of defect types, depth and concentration changes caused by ion doping, effective radiation transitions and energy transfer generated by different luminescence centers. Given the design and potential of NIR PLNPs as long-lived luminescent materials, the current challenges and future perspective in this rapidly growing field are also discussed.
Agglomeration economies and evolving urban form
Agglomeration economies are a fundamental explanation for the existence of cities. Spatial clustering allows for a variety of external benefits such as labor pooling, sharing of suppliers, and specialization; these in turn contribute to increased productivity and economic growth. Over the past several decades, the strength and nature of agglomeration economies have come into question. In the 1980s, it was argued that information and telecommunications technology reduced the need for physical proximity, and hence the value of agglomeration economies. Reduced agglomeration economies would explain the decentralization of economic activity and decline of central cities. We are now fully in the era of the information economy, with smart phones, cars, buildings, and appliances merging into the Internet of Things. At the same time, we observe the re-emergence of some downtowns and the continued growth of megalopolises around the USA, despite rising congestion. This essay traces the role and nature of agglomeration economies in the evolution of urban form.