Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2
result(s) for
"Yun, Sangho D."
Sort by:
Native mass spectrometry and structural studies reveal modulation of MsbA–nucleotide interactions by lipids
2024
The ATP-binding cassette (ABC) transporter, MsbA, plays a pivotal role in lipopolysaccharide (LPS) biogenesis by facilitating the transport of the LPS precursor lipooligosaccharide (LOS) from the cytoplasmic to the periplasmic leaflet of the inner membrane. Despite multiple studies shedding light on MsbA, the role of lipids in modulating MsbA-nucleotide interactions remains poorly understood. Here we use native mass spectrometry (MS) to investigate and resolve nucleotide and lipid binding to MsbA, demonstrating that the transporter has a higher affinity for adenosine 5’-diphosphate (ADP). Moreover, native MS shows the LPS-precursor 3-deoxy-D-
manno
-oct-2-ulosonic acid (Kdo)
2
-lipid A (KDL) can tune the selectivity of MsbA for adenosine 5’-triphosphate (ATP) over ADP. Guided by these studies, four open, inward-facing structures of MsbA are determined that vary in their openness. We also report a 2.7 Å-resolution structure of MsbA in an open, outward-facing conformation that is not only bound to KDL at the exterior site, but with the nucleotide binding domains (NBDs) adopting a distinct nucleotide-free structure. The results obtained from this study offer valuable insight and snapshots of MsbA during the transport cycle.
MsbA mediates the transport of lipopolysaccharide across the inner membrane. Here, the authors show specific MsbA-lipid interactions can tune the selectivity for binding ATP over ADP and present five structures of MsbA with one bound to lipid.
Journal Article
Real time characterization of the MAPK pathway using native mass spectrometry
2025
The MAPK pathway is a crucial cell-signaling cascade that is composed of RAS, MEK, BRAF, and ERK, which serves to connect extracellular signals to intracellular responses. Over-activating mutations in the MAPK pathway can lead to uncontrolled cell growth ultimately resulting in various types of cancer. While this pathway has been heavily studied using a battery of techniques, herein we employ native mass spectrometry (MS) to characterize the MAPK pathway, including nucleotide, drug, and protein interactions. We utilize native MS to provide detailed insights into nucleotide and drug binding to BRAF complexes, such as modulation of nucleotide binding in the presence of MEK1. We then demonstrate that different CRAF segments vary in their complex formation with KRAS, with the addition of the cysteine rich domain (CRD) enhancing complex formation compared to Ras binding domain (RBD) alone. We report differences in KRAS GTPase activity in the presence of different RAF segments, with KRAS exhibiting significantly enhanced nucleotide turnover when bound to CRAF fragments. We use ERK2 as a downstream readout to monitor the MAPK phosphorylation cascade. This study demonstrates the utility of native MS to provide detailed characterization of individual MAPK pathway components and monitor the phosphorylation cascade in real time.
Native mass spectrometry enables real time characterization of MAPK phosphorylation cascade and impact of oncogenic RAS mutants on kinetics.
Journal Article