Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
358 result(s) for "Yun, Seok Joon"
Sort by:
Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation
Although wafer-scale polycrystalline films of insulating hexagonal boron nitride (hBN) can be grown, the grain boundaries can cause both scattering or pinning of charge carriers in adjacent conducting layers that impair device performance. Lee et al. grew wafer-scale single-crystal films of hBN by feeding the precursors into molten gold films on tungsten substrates. The low solubility of boron and nitrogen in gold caused micrometer-scale grains of hBN to form that coalesced into single crystals. These films in turn supported the growth of epitaxial wafer-scale films of graphene and tungsten disulfide. Science , this issue p. 817 Single-crystalline monolayer hexagonal boron nitride films synthesized on a molten gold film served as substrates for growth of graphene and WS 2 . Although polycrystalline hexagonal boron nitride (PC-hBN) has been realized, defects and grain boundaries still cause charge scatterings and trap sites, impeding high-performance electronics. Here, we report a method of synthesizing wafer-scale single-crystalline hBN (SC-hBN) monolayer films by chemical vapor deposition. The limited solubility of boron (B) and nitrogen (N) atoms in liquid gold promotes high diffusion of adatoms on the surface of liquid at high temperature to provoke the circular hBN grains. These further evolve into closely packed unimodal grains by means of self-collimation of B and N edges inherited by electrostatic interaction between grains, eventually forming an SC-hBN film on a wafer scale. This SC-hBN film also allows for the synthesis of wafer-scale graphene/hBN heterostructure and single-crystalline tungsten disulfide.
Large-scale synthesis of graphene and other 2D materials towards industrialization
The effective application of graphene and other 2D materials is strongly dependent on the industrial-scale manufacturing of films and powders of appropriate morphology and quality. Here, we discuss three state-of-the-art mass production techniques, their limitations, and opportunities for future improvement. The industrial application of two-dimensional (2D) materials strongly depends on the large-scale manufacturing of high-quality 2D films and powders. Here, the authors analyze three state-of-the art mass production techniques, discussing the recent progress and remaining challenges for future improvements.
Synthesis of large-area multilayer hexagonal boron nitride for high material performance
Although hexagonal boron nitride (h-BN) is a good candidate for gate-insulating materials by minimizing interaction from substrate, further applications to electronic devices with available two-dimensional semiconductors continue to be limited by flake size. While monolayer h-BN has been synthesized on Pt and Cu foil using chemical vapour deposition (CVD), multilayer h-BN is still absent. Here we use Fe foil and synthesize large-area multilayer h-BN film by CVD with a borazine precursor. These films reveal strong cathodoluminescence and high mechanical strength (Young’s modulus: 1.16±0.1 TPa), reminiscent of formation of high-quality h-BN. The CVD-grown graphene on multilayer h-BN film yields a high carrier mobility of ∼24,000 cm 2  V −1  s −1 at room temperature, higher than that (∼13,000  2  V −1  s −1 ) with exfoliated h-BN. By placing additional h-BN on a SiO 2 /Si substrate for a MoS 2 (WSe 2 ) field-effect transistor, the doping effect from gate oxide is minimized and furthermore the mobility is improved by four (150) times. Multilayer h-BN films are highly desired for various applications in 2D nanoelectronics. Here, the authors demonstrate the synthesis of large-area and high-quality multi-layer h-BN films on Fe foil with high 2D material performance.
Ferromagnetic Order at Room Temperature in Monolayer WSe2 Semiconductor via Vanadium Dopant
Diluted magnetic semiconductors including Mn‐doped GaAs are attractive for gate‐controlled spintronics but Curie transition at room temperature with long‐range ferromagnetic order is still debatable to date. Here, the room‐temperature ferromagnetic domains with long‐range order in semiconducting V‐doped WSe2 monolayer synthesized by chemical vapor deposition are reported. Ferromagnetic order is manifested using magnetic force microscopy up to 360 K, while retaining high on/off current ratio of ≈105 at 0.1% V‐doping concentration. The V‐substitution to W sites keeps a V–V separation distance of 5 nm without V–V aggregation, scrutinized by high‐resolution scanning transmission electron microscopy. More importantly, the ferromagnetic order is clearly modulated by applying a back‐gate bias. The findings open new opportunities for using 2D transition metal dichalcogenides for future spintronics. Magnetic domains are observed up to room‐temperature in semiconducting V‐doped WSe2 monolayer using magnetic force microscopy (MFM). Polarization of the magnetic tip and temperature‐dependent MFM measurements clarify the magnetic response of V‐doped WSe2. Vanadium is well substituted in the tungsten site without any aggregation in WSe2 structure. Importantly, the field tunability of the magnetic domains is demonstrated by performing MFM with applying back‐gate biases.
Tailoring Quantum Tunneling in a Vanadium‐Doped WSe2/SnSe2 Heterostructure
2D van der Waals layered heterostructures allow for a variety of energy band offsets, which help in developing valuable multifunctional devices. However, p–n diodes, which are typical and versatile, are still limited by the material choice due to the fixed band structures. Here, the vanadium dopant concentration is modulated in monolayer WSe2 via chemical vapor deposition to demonstrate tunable multifunctional quantum tunneling diodes by vertically stacking SnSe2 layers at room temperature. This is implemented by substituting tungsten atoms with vanadium atoms in WSe2 to provoke the p‐type doping effect in order to efficiently modulate the Fermi level. The precise control of the vanadium doping concentration is the key to achieving the desired quantum tunneling diode behaviors by tuning the proper band alignment for charge transfer across the heterostructure. By constructing a p–n diode for p‐type V‐doped WSe2 and heavily degenerate n‐type SnSe2, the type‐II band alignment at low V‐doping concentration is clearly shown, which evolves into the type‐III broken‐gap alignment at heavy V‐doping concentration to reveal a variety of diode behaviors such as forward diode, backward diode, negative differential resistance, and ohmic resistance. 2D multifunctional diodes are realized by stacking CVD‐grown V‐doped WSe2 monolayers (p‐type) and SnSe2 (n‐type). Substituting W‐atoms with V‐atoms in WSe2 provokes the p‐type doping effect to modulate the Fermi level. The type‐II band alignment evolves into the type‐III broken‐gap alignment with increasing V‐doping concentration, revealing various diode behaviors such as forward, backward, and especially negative differential resistance transport.
Telluriding monolayer MoS2 and WS2 via alkali metal scooter
The conversion of chalcogen atoms to other types in transition metal dichalcogenides has significant advantages for tuning bandgaps and constructing in-plane heterojunctions; however, difficulty arises from the conversion of sulfur or selenium to tellurium atoms owing to the low decomposition temperature of tellurides. Here, we propose the use of sodium for converting monolayer molybdenum disulfide (MoS 2 ) to molybdenum ditelluride (MoTe 2 ) under Te-rich vapors. Sodium easily anchors tellurium and reduces the exchange barrier energy by scooting the tellurium to replace sulfur. The conversion was initiated at the edges and grain boundaries of MoS 2 , followed by complete conversion in the entire region. By controlling sodium concentration and reaction temperature of monolayer MoS 2 , we tailored various phases such as semiconducting 2H-MoTe 2 , metallic 1T′-MoTe 2 , and 2H-MoS 2− x Te x alloys. This concept was further extended to WS 2 . A high valley polarization of ~37% in circularly polarized photoluminescence was obtained in the monolayer WS 2− x Te x alloy at room temperature. Two dimensional monolayer transition metal ditellurides and their alloys are interesting but their growth has been difficult. Herein, Yun et al. demonstrate the use of sodium salts to convert transition metal disulfide to ditelluride and alloys in tellurium vapor at low temperature.
High-speed mapping of surface charge dynamics using sparse scanning Kelvin probe force microscopy
Unraveling local dynamic charge processes is vital for progress in diverse fields, from microelectronics to energy storage. This relies on the ability to map charge carrier motion across multiple length- and timescales and understanding how these processes interact with the inherent material heterogeneities. Towards addressing this challenge, we introduce high-speed sparse scanning Kelvin probe force microscopy, which combines sparse scanning and image reconstruction. This approach is shown to enable sub-second imaging (>3 frames per second) of nanoscale charge dynamics, representing several orders of magnitude improvement over traditional Kelvin probe force microscopy imaging rates. Bridging this improved spatiotemporal resolution with macroscale device measurements, we successfully visualize electrochemically mediated diffusion of mobile surface ions on a LaAlO 3 /SrTiO 3 planar device. Such processes are known to impact band-alignment and charge-transfer dynamics at these heterointerfaces. Furthermore, we monitor the diffusion of oxygen vacancies at the single grain level in polycrystalline TiO 2 . Through temperature-dependent measurements, we identify a charge diffusion activation energy of 0.18 eV, in good agreement with previously reported values and confirmed by DFT calculations. Together, these findings highlight the effectiveness and versatility of our method in understanding ionic charge carrier motion in microelectronics or nanoscale material systems. Dynamic mapping of charge motion across multiple length- and timescales is essential for understanding a variety of phenomena. Here, the authors introduce sparse scanning KPFM, which enables fast nanoscale charge mapping at 3 frames per second to track ion migration.
Sequential order dependent dark-exciton modulation in bi-layered TMD heterostructure
We report the emergence of dark-excitons in transition-metal-dichalcogenide (TMD) heterostructures that strongly rely on the stacking sequence, i.e., momentum-dark K-Q exciton located exclusively at the top layer of the heterostructure. The feature stems from band renormalization and is distinct from those of typical neutral excitons or trions, regardless of materials, substrates, and even homogeneous bilayers, which is further confirmed by scanning tunneling spectroscopy. To understand the unusual stacking sequence, we introduce the excitonic Elliot formula by imposing strain exclusively on the top layer that could be a consequence of the stacking process. We further find that the intensity ratio of Q- to K-excitons in the same layer is inversely proportional to laser power, unlike for conventional K-K excitons. This can be a metric for engineering the intensity of dark K-Q excitons in TMD heterostructures, which could be useful for optical power switches in solar panels. Here, the authors report the emergence of dark-excitons in transition-metal-dichalcogenide heterostructures that strongly rely on the stacking sequence, i.e., momentum-dark K-Q excitons located exclusively at the top layer of the heterostructure.
Plasma-Induced Phase Transformation of SnS2 to SnS
Layered van der Waals materials have recently attracted attention owing to their exceptional electrical and optical properties in thin layer form. One way to extend their utility is to form a heterostructure which combines various properties of layered materials to reveal intriguing behavior. Conventional heterostructure synthesis methods are difficult to develop and the heterostructure formed can be limited to a small area. Here, we investigate the phase transformation of SnS 2 to SnS by removing sulfur atoms at the top surface using Ar plasma. By varying the plasma power and exposure time, we observed that SnS is subsequently formed on top of the mogul-like structure of SnS 2 . Since SnS is a p- type semiconductor and SnS 2 is an n- type semiconductor, we naturally formed a vertical p-n junction. By using graphene at the top and bottom as transparent electrodes, a vertical p-n diode device is constructed. The device demonstrates good rectifying behavior and large photocurrent generation under white light. This method can be applied to large-area heterostructure synthesis using plasma via phase transformation of various metal dichalcogenides to metal monochalcogenides.
Deep Learning‐Assisted Quantification of Atomic Dopants and Defects in 2D Materials
Atomic dopants and defects play a crucial role in creating new functionalities in 2D transition metal dichalcogenides (2D TMDs). Therefore, atomic‐scale identification and their quantification warrant precise engineering that widens their application to many fields, ranging from development of optoelectronic devices to magnetic semiconductors. Scanning transmission electron microscopy with a sub‐Å probe has provided a facile way to observe local dopants and defects in 2D TMDs. However, manual data analytics of experimental images is a time‐consuming task, and often requires subjective decisions to interpret observed signals. Therefore, an approach is required to automate the detection and classification of dopants and defects. In this study, based on a deep learning algorithm, fully convolutional neural network that shows a superior ability of image segmentation, an efficient and automated method for reliable quantification of dopants and defects in TMDs is proposed with single‐atom precision. The approach demonstrates that atomic dopants and defects are precisely mapped with a detection limit of ≈1 × 1012 cm−2, and with a measurement accuracy of ≈98% for most atomic sites. Furthermore, this methodology is applicable to large volume of image data to extract atomic site‐specific information, thus providing insights into the formation mechanisms of various defects under stimuli. The deep learning‐assisted quantification algorithm reduces heavy load of data processing for researchers, which has hindered the pace of design and development of 2D transition metal dichalcogenides (2D TMDs). Furthermore, an integrated understanding of the atomic‐scale behavior of point defects in 2D TMDs under environmental stimuli is now available without data reduction or sampling.