Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
147
result(s) for
"Yushkevich, Paul A."
Sort by:
Characterizing the human hippocampus in aging and Alzheimer’s disease using a computational atlas derived from ex vivo MRI and histology
2018
Although the hippocampus is one of the most studied structures in the human brain, limited quantitative data exist on its 3D organization, anatomical variability, and effects of disease on its subregions. Histological studies provide restricted reference information due to their 2D nature. In this paper, high-resolution (∼200 × 200 × 200 μm³) ex vivo MRI scans of 31 human hippocampal specimens are combined using a groupwise diffeomorphic registration approach into a 3D probabilistic atlas that captures average anatomy and anatomic variability of hippocampal subfields. Serial histological imaging in 9 of the 31 specimens was used to label hippocampal subfields in the atlas based on cytoarchitecture. Specimens were obtained from autopsies in patients with a clinical diagnosis of Alzheimer’s disease (AD; 9 subjects, 13 hemispheres), of other dementia (nine subjects, nine hemispheres), and in subjects without dementia (seven subjects, nine hemispheres), and morphometric analysis was performed in atlas space to measure effects of age and AD on hippocampal subfields. Disproportional involvement of the cornu ammonis (CA) 1 subfield and stratum radiatum lacunosum moleculare was found in AD, with lesser involvement of the dentate gyrus and CA2/3 subfields. An association with age was found for the dentate gyrus and, to a lesser extent, for CA1. Three-dimensional patterns of variability and disease and aging effects discovered via the ex vivo hippocampus atlas provide information highly relevant to the active field of in vivo hippocampal subfield imaging.
Journal Article
Histology-derived volumetric annotation of the human hippocampal subfields in postmortem MRI
by
Kadivar, Salmon
,
Yushkevich, Paul A.
,
Adler, Daniel H.
in
Aged, 80 and over
,
Algorithms
,
Autopsy - methods
2014
Recently, there has been a growing effort to analyze the morphometry of hippocampal subfields using both in vivo and postmortem magnetic resonance imaging (MRI). However, given that boundaries between subregions of the hippocampal formation (HF) are conventionally defined on the basis of microscopic features that often lack discernible signature in MRI, subfield delineation in MRI literature has largely relied on heuristic geometric rules, the validity of which with respect to the underlying anatomy is largely unknown. The development and evaluation of such rules are challenged by the limited availability of data linking MRI appearance to microscopic hippocampal anatomy, particularly in three dimensions (3D). The present paper, for the first time, demonstrates the feasibility of labeling hippocampal subfields in a high resolution volumetric MRI dataset based directly on microscopic features extracted from histology. It uses a combination of computational techniques and manual post-processing to map subfield boundaries from a stack of histology images (obtained with 200μm spacing and 5μm slice thickness; stained using the Kluver–Barrera method) onto a postmortem 9.4Tesla MRI scan of the intact, whole hippocampal formation acquired with 160μm isotropic resolution. The histology reconstruction procedure consists of sequential application of a graph-theoretic slice stacking algorithm that mitigates the effects of distorted slices, followed by iterative affine and diffeomorphic co-registration to postmortem MRI scans of approximately 1cm-thick tissue sub-blocks acquired with 200μm isotropic resolution. These 1cm blocks are subsequently co-registered to the MRI of the whole HF. Reconstruction accuracy is evaluated as the average displacement error between boundaries manually delineated in both the histology and MRI following the sequential stages of reconstruction. The methods presented and evaluated in this single-subject study can potentially be applied to multiple hippocampal tissue samples in order to construct a histologically informed MRI atlas of the hippocampal formation.
•Human hippocampal subfields labeled manually in histology using cell features•Histology and subfield labels reconstructed over length of entire formation•Reconstruction done in anatomical space of high-resolution, postmortem MRI•Hippocampal subfield labels mapped to space of postmortem MRI
Journal Article
User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability
by
Smith, Rachel Gimpel
,
Yushkevich, Paul A.
,
Piven, Joseph
in
3D active contour models
,
Anatomical objects
,
Brain - anatomy & histology
2006
Active contour segmentation and its robust implementation using level set methods are well-established theoretical approaches that have been studied thoroughly in the image analysis literature. Despite the existence of these powerful segmentation methods, the needs of clinical research continue to be fulfilled, to a large extent, using slice-by-slice manual tracing. To bridge the gap between methodological advances and clinical routine, we developed an open source application called ITK-SNAP, which is intended to make level set segmentation easily accessible to a wide range of users, including those with little or no mathematical expertise. This paper describes the methods and software engineering philosophy behind this new tool and provides the results of validation experiments performed in the context of an ongoing child autism neuroimaging study. The validation establishes SNAP intrarater and interrater reliability and overlap error statistics for the caudate nucleus and finds that SNAP is a highly reliable and efficient alternative to manual tracing. Analogous results for lateral ventricle segmentation are provided.
Journal Article
DeepAtrophy: Teaching a neural network to detect progressive changes in longitudinal MRI of the hippocampal region in Alzheimer's disease
2021
Measures of change in hippocampal volume derived from longitudinal MRI are a well-studied biomarker of disease progression in Alzheimer's disease (AD) and are used in clinical trials to track therapeutic efficacy of disease-modifying treatments. However, longitudinal MRI change measures based on deformable registration can be confounded by MRI artifacts, resulting in over-estimation or underestimation of hippocampal atrophy. For example, the deformation-based-morphometry method ALOHA (Das et al., 2012) finds an increase in hippocampal volume in a substantial proportion of longitudinal scan pairs from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, unexpected, given that the hippocampal gray matter is lost with age and disease progression. We propose an alternative approach to quantify disease progression in the hippocampal region: to train a deep learning network (called DeepAtrophy) to infer temporal information from longitudinal scan pairs. The underlying assumption is that by learning to derive time-related information from scan pairs, the network implicitly learns to detect progressive changes that are related to aging and disease progression. Our network is trained using two categorical loss functions: one that measures the network's ability to correctly order two scans from the same subject, input in arbitrary order; and another that measures the ability to correctly infer the ratio of inter-scan intervals between two pairs of same-subject input scans. When applied to longitudinal MRI scan pairs from subjects unseen during training, DeepAtrophy achieves greater accuracy in scan temporal ordering and interscan interval inference tasks than ALOHA (88.5% vs. 75.5% and 81.1% vs. 75.0%, respectively). A scalar measure of time-related change in a subject level derived from DeepAtrophy is then examined as a biomarker of disease progression in the context of AD clinical trials. We find that this measure performs on par with ALOHA in discriminating groups of individuals at different stages of the AD continuum. Overall, our results suggest that using deep learning to infer temporal information from longitudinal MRI of the hippocampal region has good potential as a biomarker of disease progression, and hints that combining this approach with conventional deformation-based morphometry algorithms may lead to improved biomarkers in the future.
Journal Article
Nearly automatic segmentation of hippocampal subfields in in vivo focal T2-weighted MRI
2010
We present and evaluate a new method for automatically labeling the subfields of the hippocampal formation in focal 0.4×0.5×2.0mm3 resolution T2-weighted magnetic resonance images that can be acquired in the routine clinical setting with under 5min scan time. The method combines multi-atlas segmentation, similarity-weighted voting, and a novel learning-based bias correction technique to achieve excellent agreement with manual segmentation. Initial partitioning of MRI slices into hippocampal ’head’, ’body’ and ’tail’ slices is the only input required from the user, necessitated by the nature of the underlying segmentation protocol. Dice overlap between manual and automatic segmentation is above 0.87 for the larger subfields, CA1 and dentate gyrus, and is competitive with the best results for whole-hippocampus segmentation in the literature. Intraclass correlation of volume measurements in CA1 and dentate gyrus is above 0.89. Overlap in smaller hippocampal subfields is lower in magnitude (0.54 for CA2, 0.62 for CA3, 0.77 for subiculum and 0.79 for entorhinal cortex) but comparable to overlap between manual segmentations by trained human raters. These results support the feasibility of subfield-specific hippocampal morphometry in clinical studies of memory and neurodegenerative disease.
►Automated segmentation of hippocampal subfields in T2-W MRI with excellent accuracy Dice overlap between automatic and manual segmentation >0.87 for CA1, dentate gyrus Applicable to MR images that can be acquired in the clinical setting (under 5min) Small amount of manual input (tagging slices as head/body/tail) is required
Journal Article
A learning-based wrapper method to correct systematic errors in automatic image segmentation: Consistently improved performance in hippocampus, cortex and brain segmentation
2011
We propose a simple but generally applicable approach to improving the accuracy of automatic image segmentation algorithms relative to manual segmentations. The approach is based on the hypothesis that a large fraction of the errors produced by automatic segmentation are systematic, i.e., occur consistently from subject to subject, and serves as a wrapper method around a given host segmentation method. The wrapper method attempts to learn the intensity, spatial and contextual patterns associated with systematic segmentation errors produced by the host method on training data for which manual segmentations are available. The method then attempts to correct such errors in segmentations produced by the host method on new images. One practical use of the proposed wrapper method is to adapt existing segmentation tools, without explicit modification, to imaging data and segmentation protocols that are different from those on which the tools were trained and tuned. An open-source implementation of the proposed wrapper method is provided, and can be applied to a wide range of image segmentation problems.
The wrapper method is evaluated with four host brain MRI segmentation methods: hippocampus segmentation using FreeSurfer (Fischl et al., 2002); hippocampus segmentation using multi-atlas label fusion (Artaechevarria et al., 2009); brain extraction using BET (Smith, 2002); and brain tissue segmentation using FAST (Zhang et al., 2001). The wrapper method generates 72%, 14%, 29% and 21% fewer erroneously segmented voxels than the respective host segmentation methods. In the hippocampus segmentation experiment with multi-atlas label fusion as the host method, the average Dice overlap between reference segmentations and segmentations produced by the wrapper method is 0.908 for normal controls and 0.893 for patients with mild cognitive impairment. Average Dice overlaps of 0.964, 0.905 and 0.951 are obtained for brain extraction, white matter segmentation and gray matter segmentation, respectively.
► A learning-based algorithm that automatically adapts existing segmentation tools to perform optimally in different applications using the training data provided by the user. ► Can be applied to a wide range of image segmentation problems. ► An open source implementation is provided.
Journal Article
Postmortem imaging reveals patterns of medial temporal lobe vulnerability to tau pathology in Alzheimer’s disease
by
Mizsei, Gabor
,
Delgado González, José Carlos
,
Wolk, David A.
in
631/378/1689/1283
,
692/308/53/2421
,
692/53/2421
2024
Our current understanding of the spread and neurodegenerative effects of tau neurofibrillary tangles (NFTs) within the medial temporal lobe (MTL) during the early stages of Alzheimer’s Disease (AD) is limited by the presence of confounding non-AD pathologies and the two-dimensional (2-D) nature of conventional histology studies. Here, we combine ex vivo MRI and serial histological imaging from 25 human MTL specimens to present a detailed, 3-D characterization of quantitative NFT burden measures in the space of a high-resolution, ex vivo atlas with cytoarchitecturally-defined subregion labels, that can be used to inform future in vivo neuroimaging studies. Average maps show a clear anterior to poster gradient in NFT distribution and a precise, spatial pattern with highest levels of NFTs found not just within the transentorhinal region but also the cornu ammonis (CA1) subfield. Additionally, we identify granular MTL regions where measures of neurodegeneration are likely to be linked to NFTs specifically, and thus potentially more sensitive as early AD biomarkers.
Using high-resolution ex vivo MRI and serial histology, Ravikumar et al. characterise 3D tau spread across histologically defined medial temporal lobe subregions thus providing a postmortem reference for in vivo studies on early Alzheimer’s disease.
Journal Article
Baseline structural MRI and plasma biomarkers predict longitudinal structural atrophy and cognitive decline in early Alzheimer’s disease
by
Wisse, Laura E. M.
,
de Flores, Robin
,
Yushkevich, Paul A.
in
Alzheimer Disease - cerebrospinal fluid
,
Alzheimer's disease
,
Atrophy
2023
Background
Crucial to the success of clinical trials targeting early Alzheimer’s disease (AD) is recruiting participants who are more likely to progress over the course of the trials. We hypothesize that a combination of plasma and structural MRI biomarkers, which are less costly and non-invasive, is predictive of longitudinal progression measured by atrophy and cognitive decline in early AD, providing a practical alternative to PET or cerebrospinal fluid biomarkers.
Methods
Longitudinal T1-weighted MRI, cognitive (memory-related test scores and clinical dementia rating scale), and plasma measurements of 245 cognitively normal (CN) and 361 mild cognitive impairment (MCI) patients from ADNI were included. Subjects were further divided into β-amyloid positive/negative (Aβ+/Aβ−)] subgroups. Baseline plasma (p-tau
181
and neurofilament light chain) and MRI-based structural medial temporal lobe subregional measurements and their association with longitudinal measures of atrophy and cognitive decline were tested using stepwise linear mixed effect modeling in CN and MCI, as well as separately in the Aβ+/Aβ− subgroups. Receiver operating characteristic (ROC) analyses were performed to investigate the discriminative power of each model in separating fast and slow progressors (first and last terciles) of each longitudinal measurement.
Results
A total of 245 CN (35.0% Aβ+) and 361 MCI (53.2% Aβ+) participants were included. In the CN and MCI groups, both baseline plasma and structural MRI biomarkers were included in most models. These relationships were maintained when limited to the Aβ+ and Aβ− subgroups, including Aβ− CN (normal aging). ROC analyses demonstrated reliable discriminative power in identifying fast from slow progressors in MCI [area under the curve (AUC): 0.78–0.93] and more modestly in CN (0.65–0.73).
Conclusions
The present data support the notion that plasma and MRI biomarkers, which are relatively easy to obtain, provide a prediction for the rate of future cognitive and neurodegenerative progression that may be particularly useful in clinical trial stratification and prognosis. Additionally, the effect in Aβ− CN indicates the potential use of these biomarkers in predicting a normal age-related decline.
Journal Article
Medial temporal lobe atrophy patterns in early-versus late-onset amnestic Alzheimer’s disease
by
Janelidze, Shorena
,
Spotorno, Nicola
,
Wuestefeld, Anika
in
Advertising executives
,
Age of Onset
,
Aged
2024
Background
The medial temporal lobe (MTL) is hypothesized to be relatively spared in early-onset Alzheimer’s disease (EOAD). Yet, detailed examination of MTL subfields and drivers of atrophy in amnestic EOAD is lacking.
Methods
BioFINDER-2 participants with memory impairment, abnormal amyloid-β and tau-PET were included. Forty-one amnestic EOAD individuals ≤65 years and, as comparison, late-onset AD (aLOAD, ≥70 years,
n
= 154) and amyloid-β-negative cognitively unimpaired controls were included. MTL subregions and biomarkers of (co-)pathologies were measured.
Results
AD groups showed smaller MTL subregions compared to controls. Atrophy patterns were similar across AD groups: aLOAD showed thinner entorhinal cortices than aEOAD; aEOAD showed thinner parietal regions than aLOAD. aEOAD showed lower white matter hyperintensities than aLOAD. No differences in MTL tau-PET or transactive response DNA binding protein 43-proxy positivity were found.
Conclusions
We found evidence for MTL atrophy in amnestic EOAD and overall similar levels to aLOAD of MTL tau pathology and co-pathologies.
Journal Article
Correction: Baseline structural MRI and plasma biomarkers predict longitudinal structural atrophy and cognitive decline in early Alzheimer’s disease
by
Wisse, Laura E. M.
,
de Flores, Robin
,
Yushkevich, Paul A.
in
Alzheimer's disease
,
Biomedical and Life Sciences
,
Biomedicine
2024
Journal Article