Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
18 result(s) for "Yuste, Ana L."
Sort by:
Multicenter Phase I Study of Irinotecan plus Raltitrexed in Patients with 5-Fluorouracil-Refractory Advanced Colorectal Cancer
Irinotecan and raltitrexed are active against advanced colorectal cancer, act through different mechanisms, and have non-overlapping toxicity profiles. In vitro studies have shown a schedule-dependent synergism between both drugs. The aim of this multicenter study was to determine the maximum tolerated dose (MTD) of this combination. Patients with 5-fluorouracil-refractory, advanced colorectal cancer were eligible. Dose escalation consisted of irinotecan (250–350 mg/m 2 as a 60-min infusion) in combination with a fixed dose of raltitrexed (3 mg/m 2 as a 15-min infusion, 1 h after irinotecan). Courses were repeated every 21 days. Three to 6 patients were to be included at each dose level. Dose limiting (NCI-CTC grade 3–4) toxicities (DLT) were assessed during the first 2 cycles. Thirteen patients were recruited (4, 3 and 6 in levels I, II and III, respectively). Main toxicity was diarrhea and asthenia, whereas myelotoxicity was mild. At level III, 2/6 patients experienced DLT (grade 4 diarrhea and neutropenia). The MTD was not reached, but further dose escalation was not attempted. Among 12 patients with measurable disease, 2 partial responses were observed for an overall response rate of 17%. The combination of single-agent full doses of irinotecan (350 mg/m 2 ) and raltitrexed (3 mg/m 2 ) in a 3-weekly schedule is feasible, with mild toxicity and a promising clinical activity. Diarrhea is the DLT, but it is not more common or severe than that described with irinotecan alone.
Parallel origins of photoperiod adaptation following dual domestications of common bean
Common bean (Phaseolus vulgaris L.) is an important grain legume domesticated independently in Mexico and Andean South America approximately 8000 years ago. Wild forms are obligate short-day plants, and relaxation of photoperiod sensitivity was important for expansion to higher latitudes and subsequent global spread. To better understand the nature and origin of this key adaptation, we examined its genetic control in progeny of a wide cross between a wild accession and a photoperiod-insensitive cultivar. We found that photoperiod sensitivity is under oligogenic control, and confirm a major effect of the Ppd locus on chromosome 1. The red/far-red photoreceptor gene PHYTOCHROME A3 (PHYA3) was identified as a strong positional candidate for Ppd, and sequencing revealed distinct deleterious PHYA3 mutations in photoperiod-insensitive Andean and Mesoamerican accessions. These results reveal the independent origins of photoperiod insensitivity within the two major common bean gene pools and demonstrate the conserved importance of PHYA genes in photoperiod adaptation of short-day legume species.
Decoding gene expression signatures underlying vegetative to inflorescence meristem transition in the common bean
The tropical common bean (Phaseolus vulgaris L.) is an obligatory short-day plant that requires relaxation of the photoperiod to induce flowering. Similar to other crops, photoperiod-induced floral initiation depends on the differentiation and maintenance of meristems. In this study, the global changes in transcript expression profiles were analyzed in two meristematic tissues corresponding to the vegetative and inflorescence meristems of two genotypes with different sensitivities to photoperiods. A total of 3396 differentially expressed genes (DEGs) were identified, and 1271 and 1533 were found to be up-regulated and down-regulated, respectively, whereas 592 genes showed discordant expression patterns between both genotypes. Arabidopsis homologues of DEGs were identified, and most of them were not previously involved in Arabidopsis floral transition, suggesting an evolutionary divergence of the transcriptional regulatory networks of the flowering process of both species. However, some genes belonging to the photoperiod and flower development pathways with evolutionarily conserved transcriptional profiles have been found. In addition, the flower meristem identity genes APETALA1 and LEAFY, as well as CONSTANS-LIKE 5, were identified as markers to distinguish between the vegetative and reproductive stages. Our data also indicated that the down-regulation of the photoperiodic genes seems to be directly associated with promoting floral transition under inductive short-day lengths. These findings provide valuable insight into the molecular factors that underlie meristematic development and contribute to understanding the photoperiod adaptation in the common bean.
A collection of enhancer trap insertional mutants for functional genomics in tomato
Summary With the completion of genome sequencing projects, the next challenge is to close the gap between gene annotation and gene functional assignment. Genomic tools to identify gene functions are based on the analysis of phenotypic variations between a wild type and its mutant; hence, mutant collections are a valuable resource. In this sense, T‐DNA collections allow for an easy and straightforward identification of the tagged gene, serving as the basis of both forward and reverse genetic strategies. This study reports on the phenotypic and molecular characterization of an enhancer trap T‐DNA collection in tomato (Solanum lycopersicum L.), which has been produced by Agrobacterium‐mediated transformation using a binary vector bearing a minimal promoter fused to the uidA reporter gene. Two genes have been isolated from different T‐DNA mutants, one of these genes codes for a UTP‐glucose‐1‐phosphate uridylyltransferase involved in programmed cell death and leaf development, which means a novel gene function reported in tomato. Together, our results support that enhancer trapping is a powerful tool to identify novel genes and regulatory elements in tomato and that this T‐DNA mutant collection represents a highly valuable resource for functional analyses in this fleshy‐fruited model species.
Enhanced HIV-1 Neutralizing Antibody Breadth in HTLV-2 Co-Infected Individuals: Influence of Antiretroviral Regimen and B Cell Subset Distribution
Background/Objectives: This study aimed to explore how HTLV-2 infection affects the production of broadly neutralizing antibodies (bNAbs) in persons with HIV-1 (PWH) and to assess the impact of boosted protease inhibitors (PIs). Methods: We evaluated broadly neutralizing antibody (bNAb) activity in 65 PWH, which included 27 who were also co-infected with HTLV-2. All participants were former injection drug users with HCV antibodies and were receiving suppressive antiretroviral therapy (ART). Neutralizing activity was assessed against six recombinant HIV-1 viruses that represent five different subtypes. B cell subsets were also analyzed. Results: HTLV-2 co-infection and the lack of ritonavir-boosted protease inhibitors (r-PIs) were both independently associated with higher neutralization scores (p = 0.017 and p = 0.005, respectively). Among those not on r-PIs, individuals co-infected with HTLV-2 showed significantly higher neutralization scores (p = 0.027) and a broader neutralization breadth (83.4% vs. 48.5%, p = 0.015) compared to those infected only with HIV-1. Additionally, HTLV-2 co-infected individuals had more resting memory B cells (p = 0.001) and fewer activated memory B cells (p = 0.017) than the HIV-1 mono-infected individuals. In our multivariate analysis, only HTLV-2 co-infection remained independently associated with neutralization scores (p = 0.027). Elite neutralizers (with a breadth score of ≥10) had more naive B cells and fewer resting memory B cells compared to those with weaker neutralization in both groups. Conclusions: Co-infection with HTLV-2 enhances bNAb production in PWH on suppressive ART and, in particular, in the absence of r-PI regimens. The prominent neutralizing activity corresponded with B cell subset distributions. The results suggest the complexity regarding the interaction between viral co-infections, antiretroviral regimens, and humoral immune compartments and may inform further H1V-1 pathogenesis inquiries or the appropriate design of a vaccine.
Genetic linkage map of melon (Cucumis melo L.) and localization of a major QTL for powdery mildew resistance
Powdery mildew caused by Podosphaera xanthii has become a major problem in melon since it occurs all year round irrespective of the growing system. The TGR-1551 melon genotype was found to be resistant to several melon diseases, among them powdery mildew. However, the corresponding resistance genes have been never mapped. We constructed an integrated genetic linkage map using an F2 population derived from a cross between the multi-resistant genotype TGR-1551 and the susceptible Spanish cultivar ‘Bola de Oro'. The map spans 1,284.9 cM, with an average distance of 3.6 cM among markers, and consists of 354 loci (188 AFLP, 39 RAPD, 111 SSR, 14 SCAR/CAPS/dCAPS, and two phenotypic traits) distributed in 14 linkage groups. QTL analysis identified one major QTL (Pm-R) on LG V for resistance to races 1, 2, and 5 of powdery mildew. The PM4-CAPS marker is closely linked to the Pm-R QTL at a genetic distance of 1.9 cM, and the PM3-CAPS marker is located within the support interval of this QTL. These codominant markers, together with the map information reported here, could be used for melon breeding, and particularly for genotyping selection of resistance to powdery mildew in this vegetable crop species.
Transcriptional Dynamics and Candidate Genes Involved in Pod Maturation of Common Bean (Phaseolus vulgaris L.)
Pod maturation of common bean relies upon complex gene expression changes, which in turn are crucial for seed formation and dispersal. Hence, dissecting the transcriptional regulation of pod maturation would be of great significance for breeding programs. In this study, a comprehensive characterization of expression changes has been performed in two common bean cultivars (ancient and modern) by analyzing the transcriptomes of five developmental pod stages, from fruit setting to maturation. RNA-seq analysis allowed for the identification of key genes shared by both accessions, which in turn were homologous to known Arabidopsis maturation genes and furthermore showed a similar expression pattern along the maturation process. Gene- expression changes suggested a role in promoting an accelerated breakdown of photosynthetic and ribosomal machinery associated with chlorophyll degradation and early activation of alpha-linolenic acid metabolism. A further study of transcription factors and their DNA binding sites revealed three candidate genes whose functions may play a dominant role in regulating pod maturation. Altogether, this research identifies the first maturation gene set reported in common bean so far and contributes to a better understanding of the dynamic mechanisms of pod maturation, providing potentially useful information for genomic-assisted breeding of common bean yield and pod quality attributes.
Catheter-related bloodstream infections in patients with oncohaematological malignancies
[...]biofilm eradication was not achieved in either case.2 The incapability of MRSA biofilm eradication with 2·5 mg/mL daptomycin is in agreement with a catheter-related bloodstream infection model, in which only catheters with daptomycin at 50 mg/mL showed a significant percentage of negative catheter culture with other antibiotic options and with controls.5 In our experience at Clinica Universidad de Navarra, daptomycin lock therapy is successful in more than 85% of patients diagnosed with catheter-related bloodstream infection caused by coagulase-negative Staphylococcus and Enterococcus spp.3 Despite these promising results, evidence that supports the role of daptomycin in the treatment of patients diagnosed with MRSA catheter-related bloodstream infections is scarce, so large, prospective, multicentre randomised clinical trials are needed.
Determination of the Concentration of IgG against the Spike Receptor-Binding Domain That Predicts the Viral Neutralizing Activity of Convalescent Plasma and Serum against SARS-CoV-2
Several hundred millions of people have been diagnosed of coronavirus disease 2019 (COVID-19), causing millions of deaths and a high socioeconomic burden. SARS-CoV-2, the causative agent of COVID-19, induces both specific T- and B-cell responses, being antibodies against the virus detected a few days after infection. Passive immunization with hyperimmune plasma from convalescent patients has been proposed as a potentially useful treatment for COVID-19. Using an in-house quantitative ELISA test, we found that plasma from 177 convalescent donors contained IgG antibodies specific to the spike receptor-binding domain (RBD) of SARS-CoV-2, although at very different concentrations which correlated with previous disease severity and gender. Anti-RBD IgG plasma concentrations significantly correlated with the plasma viral neutralizing activity (VN) against SARS-CoV-2 in vitro. Similar results were found using an independent cohort of serum from 168 convalescent health workers. These results validate an in-house RBD IgG ELISA test in a large cohort of COVID-19 convalescent patients and indicate that plasma from all convalescent donors does not contain a high enough amount of anti-SARS-CoV-2-RBD neutralizing IgG to prevent SARS-CoV-2 infection in vitro. The use of quantitative anti-RBD IgG detection systems might help to predict the efficacy of the passive immunization using plasma from patients recovered from SARS-CoV-2.
Codominant PCR-based markers and candidate genes for powdery mildew resistance in melon (Cucumis melo L.)
Powdery mildew caused by Podosphaera xanthii is a major disease in melon crops, and races 1, 2, and 5 of this fungus are those that occur most frequently in southern Europe. The genotype TGR-1551 bears a dominant gene that provides resistance to these three races of P. xanthii. By combining bulked segregant analysis and amplified fragment length polymorphisms (AFLP), we identified eight markers linked to this dominant gene. Cloning and sequencing of the selected AFLP fragments allowed the development of six codominant PCR-based markers which mapped on the linkage group (LG) V. Sequence analysis of these markers led to the identification of two resistance-like genes, MRGH5 and MRGH63, belonging to the nucleotide binding site (NBS)-leucine-rich repeat (LRR) gene family. Quantitative trait loci (QTL) analysis detected two QTLs, Pm-R1-2 and Pm-R5, the former significantly associated with the resistance to races 1 and 2 (LOD score of 26.5 and 33.3; 53.6 and 61.9% of phenotypic variation, respectively), and the latter with resistance to race 5 (LOD score of 36.8; 65.5% of phenotypic variation), which have been found to be colocalized with the MRGH5 and MRGH63 genes, respectively. The results suggest that the cluster of NBS-LRR genes identified in LG V harbours candidate genes for resistance to races 1, 2, and 5 of P. xanthii. The evaluation of other resistant germplasm showed that the codominant markers here reported are also linked to the Pm-w resistance gene carried by the accession ‘WMR-29' proving their usefulness as genotyping tools in melon breeding programmes.