Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
38
result(s) for
"Zúñiga, Elina I"
Sort by:
Mass spectrometry searches using MASST
by
Sikora, Nicole
,
Labarta-Bajo Lara
,
Carpenter, Carolina S
in
Mass spectrometry
,
Mass spectroscopy
2020
Journal Article
Metabolic deficiencies underlie reduced plasmacytoid dendritic cell IFN-I production following viral infection
2025
Type I Interferons (IFN-I) are central to host protection against viral infections, with plasmacytoid dendritic cells (pDC) being the most significant source, yet pDCs lose their IFN-I production capacity following an initial burst of IFN-I, resulting in susceptibility to secondary infections. The underlying mechanisms of these dynamics are not well understood. Here we find that viral infection reduces the capacity of pDCs to engage both oxidative and glycolytic metabolism. Mechanistically, we identify lactate dehydrogenase B (LDHB) as a positive regulator of pDC IFN-I production in mice and humans; meanwhile, LDHB deficiency is associated with suppressed IFN-I production, pDC metabolic capacity, and viral control following infection. In addition, preservation of LDHB expression is sufficient to partially retain the function of otherwise exhausted pDCs, both in vitro and in vivo. Furthermore, restoring LDHB in vivo in pDCs from infected mice increases IFNAR-dependent, infection-associated pathology. Our work thus identifies a mechanism for balancing immunity and pathology during viral infections, while also providing insight into the highly preserved infection-driven pDC inhibition.
Plasmacytoid dendritic cells (pDC) are the major IFN-I-producing cells, but this production returns to baseline soon after viral infection. Here the authors show that this decrease in IFN-I production and related pDC functions may be attributed to suppressed oxidative and glycolytic metabolism of pDCs, with lactate dehydrogenase B identified as a regulator.
Journal Article
Influenza NS1 directly modulates Hedgehog signaling during infection
2017
The multifunctional NS1 protein of influenza A viruses suppresses host cellular defense mechanisms and subverts other cellular functions. We report here on a new role for NS1 in modifying cell-cell signaling via the Hedgehog (Hh) pathway. Genetic epistasis experiments and FRET-FLIM assays in Drosophila suggest that NS1 interacts directly with the transcriptional mediator, Ci/Gli1. We further confirmed that Hh target genes are activated cell-autonomously in transfected human lung epithelial cells expressing NS1, and in infected mouse lungs. We identified a point mutation in NS1, A122V, that modulates this activity in a context-dependent fashion. When the A122V mutation was incorporated into a mouse-adapted influenza A virus, it cell-autonomously enhanced expression of some Hh targets in the mouse lung, including IL6, and hastened lethality. These results indicate that, in addition to its multiple intracellular functions, NS1 also modifies a highly conserved signaling pathway, at least in part via cell autonomous activities. We discuss how this new Hh modulating function of NS1 may influence host lethality, possibly through controlling cytokine production, and how these new insights provide potential strategies for combating infection.
Journal Article
Type I Interferon Induction and Exhaustion during Viral Infection: Plasmacytoid Dendritic Cells and Emerging COVID-19 Findings
2021
Type I Interferons (IFN-I) are a family of potent antiviral cytokines that act through the direct restriction of viral replication and by enhancing antiviral immunity. However, these powerful cytokines are a caged lion, as excessive and sustained IFN-I production can drive immunopathology during infection, and aberrant IFN-I production is a feature of several types of autoimmunity. As specialized producers of IFN-I plasmacytoid (p), dendritic cells (DCs) can secrete superb quantities and a wide breadth of IFN-I isoforms immediately after infection or stimulation, and are the focus of this review. Notably, a few days after viral infection pDCs tune down their capacity for IFN-I production, producing less cytokines in response to both the ongoing infection and unrelated secondary stimulations. This process, hereby referred to as “pDC exhaustion”, favors viral persistence and associates with reduced innate responses and increased susceptibility to secondary opportunistic infections. On the other hand, pDC exhaustion may be a compromise to avoid IFN-I driven immunopathology. In this review we reflect on the mechanisms that initially induce IFN-I and subsequently silence their production by pDCs during a viral infection. While these processes have been long studied across numerous viral infection models, the 2019 coronavirus disease (COVID-19) pandemic has brought their discussion back to the fore, and so we also discuss emerging results related to pDC-IFN-I production in the context of COVID-19.
Journal Article
CD8 T cells drive anorexia, dysbiosis, and blooms of a commensal with immunosuppressive potential after viral infection
by
Humphrey, Gregory
,
Sanders, Karenina
,
Kazane, Katelynn R.
in
Adaptation
,
Akkermansia
,
Animals
2020
Infections elicit immune adaptations to enable pathogen resistance and/or tolerance and are associated with compositional shifts of the intestinal microbiome. However, a comprehensive understanding of how infections with pathogens that exhibit distinct capability to spread and/or persist differentially change the microbiome, the underlying mechanisms, and the relative contribution of individual commensal species to immune cell adaptations is still lacking. Here, we discovered that mouse infection with a fast-spreading and persistent (but not a slow-spreading acute) isolate of lymphocytic choriomeningitis virus induced large-scale microbiome shifts characterized by increased Verrucomicrobia and reduced Firmicute/Bacteroidetes ratio. Remarkably, the most profound microbiome changes occurred transiently after infection with the fast-spreading persistent isolate, were uncoupled from sustained viral loads, and were instead largely caused by CD8 T cell responses and/or CD8 T cell-induced anorexia. Among the taxa enriched by infection with the fast-spreading virus, Akkermansia muciniphila, broadly regarded as a beneficial commensal, bloomed upon starvation and in a CD8 T cell-dependent manner. Strikingly, oral administration of A. muciniphila suppressed selected effector features of CD8 T cells in the context of both infections. Our findings define unique microbiome differences after chronic versus acute viral infections and identify CD8 T cell responses and downstream anorexia as driver mechanisms of microbial dysbiosis after infectionwith a fast-spreading virus. Our data also highlight potential context-dependent effects of probiotics and suggest amodel in which changes in host behavior and downstream microbiome dysbiosis may constitute a previously unrecognized negative feedback loop that contributes to CD8 T cell adaptations after infections with fastspreading and/or persistent pathogens.
Journal Article
BAtCHing stem-like T cells during exhaustion
by
Zúñiga, Elina I.
,
Labarta-Bajo, Lara
in
631/250/1619/554/1834
,
631/250/255/2514
,
631/45/612/822
2021
Long-term pathogen and tumor control as well as checkpoint immunotherapies rely on ‘stem-like’ CD8
+
T cells. New results uncover BACH2 as a key regulator of this subpopulation and solve an important piece of the puzzle.
Journal Article
TCRα reporter mice reveal contribution of dual TCRα expression to T cell repertoire and function
2020
It is known that a subpopulation of T cells expresses two T cell receptor (TCR) clonotypes, though the extent and functional significance of this is not established. To definitively evaluate dual TCRα cells, we generated mice with green fluorescent protein and red fluorescent protein reporters linked to TCRα, revealing that ∼16% of T cells express dual TCRs, notably higher than prior estimates. Importantly, dual TCR expression has functional consequences, as dual TCR cells predominated response to lymphocytic choriomeningitis virus infection, comprising up to 60% of virus-specific CD4⁺ and CD8⁺ T cells during acute responses. Dual receptor expression selectively influenced immune memory, as postinfection memory CD4⁺ populations contained significantly increased frequencies of dual TCR cells. These data reveal a previously unappreciated contribution of dual TCR cells to the immune repertoire and highlight their potential effects on immune responses.
Journal Article
Early transcriptional and epigenetic divergence of CD8+ T cells responding to acute versus chronic infection
by
Wehrens, Ellen J.
,
Yeo, Gene W.
,
He, Zhaoren
in
Animals
,
Approximation
,
Biology and life sciences
2023
During a microbial infection, responding CD8 + T cells give rise to effector cells that provide acute host defense and memory cells that provide sustained protection. An alternative outcome is exhaustion, a state of T cell dysfunction that occurs in the context of chronic infections and cancer. Although it is evident that exhausted CD8 + T (T EX ) cells are phenotypically and molecularly distinct from effector and memory CD8 + T cells, the factors regulating the earliest events in the differentiation process of T EX cells remain incompletely understood. Here, we performed single-cell RNA-sequencing and single-cell ATAC-sequencing of CD8 + T cells responding to LCMV-Armstrong (LCMV-Arm) or LCMV-Clone 13 (LCMV-Cl13), which result in acute or chronic infections, respectively. Compared to CD8 + T cells that had undergone their first division in response to LCMV-Arm (Div1 ARM ) cells, CD8 + T cells that had undergone their first division in response to LCMV-Cl13 (Div1 CL13 ) expressed higher levels of genes encoding transcription factors previously associated with exhaustion, along with higher levels of Ezh2, the catalytic component of the Polycomb Repressive Complex 2 (PRC2) complex, which mediates epigenetic silencing. Modulation of Ezh2 resulted in altered expression of exhaustion-associated molecules by CD8 + T cells responding to LCMV-Cl13, though the specific cellular and infectious contexts, rather than simply the level of Ezh2 expression, likely determine the eventual outcome. Taken together, these findings suggest that the differentiation paths of CD8 + T cells responding to acute versus chronic infections may diverge earlier than previously appreciated.
Journal Article
IL-27 regulates the number, function and cytotoxic program of antiviral CD4 T cells and promotes cytomegalovirus persistence
by
Wehrens, Ellen J.
,
Wong, Kurt A.
,
Khan, Ayesha
in
Animals
,
Antiviral drugs
,
Bacterial infections
2018
The role of IL-27 in antiviral immunity is still incompletely understood, especially in the context of chronic viruses that induce a unique environment in their infected host. Cytomegalovirus (CMV) establishes a persistent, tissue localized infection followed by lifelong latency. CMV infects the majority of people and although asymptomatic in healthy individuals, can cause serious disease or death in those with naïve or compromised immune systems. Therefore, there is an urgent need to develop a protective CMV vaccine for people at-risk and identifying key regulators of the protective immune response towards CMV will be crucial. Here we studied mouse CMV (MCMV) in IL-27 receptor deficient animals (Il27ra-/-) to assess the role of IL-27 in regulating CMV immunity. We found that IL-27 enhanced the number of antiviral CD4 T cells upon infection. However, in contrast to a well-established role for CD4 T cells in controlling persistent replication and a positive effect of IL-27 on their numbers, IL-27 promoted MCMV persistence in the salivary gland. This coincided with IL-27 mediated induction of IL-10 production in CD4 T cells. Moreover, IL-27 reduced expression of the transcription factor T-bet and restricted a cytotoxic phenotype in antiviral CD4 T cells. This is a highly intriguing result given the profound cytotoxic phenotype of CMV-specific CD4 T cells seen in humans and we established that dendritic cell derived IL-27 was responsible for this effect. Together, these data show that IL-27 regulates the number and effector functions of MCMV-specific CD4 T cells and could be targeted to enhance control of persistent/latent infection.
Journal Article
Genetic alteration of heparan sulfate in CD11c + immune cells inhibits inflammation and facilitates pathogen clearance during influenza A virus infection
2022
Survival from influenza A virus (IAV) infection largely depends on an intricate balance between pathogen clearance and immunomodulation in the lung. We demonstrate that genetic alteration of the glycan heparan sulfate (HS) in CD11c + cells via
Ndst1f
/f
CD11cCre
+ mutation, which inhibits HS sulfation in a major antigen presenting cell population, reduces lung inflammation by A/Puerto Rico/8/1934(H1N1) influenza in mice. Mutation was also characterized by a reduction in lung infiltration by CD4
+
regulatory T (T
reg
) cells in the late infection/effector phase, 9 days post inoculation (p.i.), without significant differences in lung CD8 + T cells, or T
reg
cells at an earlier point (day 5) following infection. Induction of under-sulfated HS via Ndst1 silencing in a model dendritic cell line (DC2.4) resulted in up-regulated basal expression of the antiviral cytokine interferon β (IFN-β) relative to control. Stimulating cells with the TLR9 ligand CpG resulted in greater nuclear factor-κB (NFκB) phosphorylation in Ndst1 silenced DC2.4 cells. While stimulating cells with CpG also modestly increased IFN-β expression, this did not lead to significant increases in IFN-β protein production. In further IFN-β protein response studies using primary bone marrow DCs from
Ndst1f
/f
CD11cCre
+ mutant and
Cre
− control mice, while trace IFN-β protein was detected in response to CpG, stimulation with the TLR7 ligand R848 resulted in robust IFN-β production, with significantly higher levels associated with DC
Ndst1
mutation. In vivo, improved pathogen clearance in
Ndst1f
/f
CD11cCre
+ mutant mice was suggested by reduced IAV AA5H nucleoprotein in lung examined in the late/effector phase. Earlier in the course of infection (day 5 p.i.), mean viral load, as measured by viral RNA, was not significantly different among genotypes. These findings point to novel regulatory roles for DC HS in innate and adaptive immunity during viral infection. This may have therapeutic potential and guide DC targeted HS engineering platforms in the setting of IAV or other respiratory viruses.
Journal Article