Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
15 result(s) for "Zaïri, Amira"
Sort by:
Phytochemical Characterization and Anti-Helicobacter pylori Potential of Haloxylon articulatum Extracts: Antioxidant Activity and Molecular Docking Insights
Haloxylon articulatum is traditionally used for treating infections, digestive issues, and oxidative stress. Despite its ethnopharmacological relevance, its phytochemistry and biological activities, particularly in Iraq, are underexplored. This study investigated the phytochemical composition of H. articulatum extracts and evaluated their antioxidant and anti-Helicobacter pylori activities, supported by molecular docking and in silico ADMET analysis. Methanol/water and ethyl acetate extracts from roots and aerial parts were analyzed using LC-HRMS/MS. Antioxidant capacity was measured via DPPH assay, and anti-H. pylori activity was assessed using broth microdilution. Molecular docking targeted bacterial isoleucyl-tRNA synthetase, and ADMET predictions were carried out with SwissADME and ADMETlab. Phytochemical profiling identified 32 compounds, including phenolamides, flavonoids, alkaloids, and triterpenoid glycosides. Root extracts exhibited stronger antioxidant and antibacterial effects than aerial parts. Ethyl acetate extracts were inactive. Phenolamides, N-caffeoyltyramine, and sinapoyltyramine, present in the extract, showed significant activity (MICs = 54 ± 0.92 and 74 ± 1.05 µg/mL). Docking supported their strong binding to the target enzyme. ADMET results indicated good oral bioavailability and low toxicity. This study is the first to report the anti-H. pylori activity of H. articulatum and to characterize its Iraqi chemotype through advanced metabolomics. The findings highlight the plant’s potential as a source of multifunctional phytochemicals with antioxidant and antibacterial applications, warranting further preclinical development and toxicological investigation.
Phytochemical Analysis and Evaluation of the Antioxidant, Antiproliferative, Antibacterial, and Antibiofilm Effects of Globularia alypum (L.) Leaves
Globularia alypum L. (GA) is a Mediterranean plant of the Globulariaceae family which is widely used in traditional Tunisian medicine. The main goal of this study was to evaluate the phytochemical composition, antioxidant, antibacterial, and antibiofilm activities, and the antiproliferative potential of different extracts of this plant. The identification and the quantification of the different constituents of extracts were determined using gas chromatography–mass spectrometry (GC-MS). The antioxidant activities were evaluated using spectrophotometric methods and chemical tests. The antiproliferative study was based on the use of colorectal cancer SW620 cells, including an antibacterial assessment with the microdilution method and analysis of the antibiofilm effects via the crystal violet assay. All extracts presented several components, mainly sesquiterpenes, hydrocarbon, and oxygenated monoterpenes. The results revealed that the maceration extract had the most important antioxidant effect (IC50 = 0.04 and 0.15 mg/mL), followed by the sonication extract (IC50 = 0.18 and 0.28 mg/mL). However, the sonication extract demonstrated significant antiproliferative (IC50 = 20 µg/mL), antibacterial (MIC = 6.25 mg/mLand MBC > 25 mg/mL), and antibiofilm (35.78% at 25 mg/mL) properties against S. aureus. The results achieved confirm the important role of this plant as a source of therapeutic activities.
Evaluation of the Antibacterial Activity of New Dermaseptin Derivatives against Acinetobacter baumannii
Nosocomial infections represent one of the biggest health problems nowadays. Acinetobacter baumannii is known as an opportunistic pathogen in humans, affecting people with compromised immune systems, and is becoming increasingly important as a hospital-derived infection. It is known that in recent years, more and more bacteria have become multidrug-resistant (MDR) and, for this reason, the development of new drugs is a priority. However, these products must not affect the human body, and therefore, cytotoxicity studies are mandatory. In this context, antimicrobial peptides with potential antibacterial proprieties could be an alternative. In this research, we describe the synthesis and the bioactivity of dermaseptins and their derivatives against Acinetobacter baumannii. The cytotoxicity of these compounds was investigated on the HEp-2 cell line by MTT cell viability assay. Thereafter, we studied the morphological alterations caused by the action of one of the active peptides on the bacterial membrane using atomic force microscopy (AFM). The cytotoxicity of dermaseptins was concentration-dependent at microgram concentrations. It was observed that all tested analogs exhibited antibacterial activity with Minimum Inhibitory Concentrations (MICs) ranging from 3.125 to 12.5 μg/mL and Minimum Bactericidal Concentrations (MBCs) ranging from 6.25 to 25 μg/mL. Microscopic images obtained by AFM revealed morphological changes on the surface of the treated bacteria caused by K4S4(1-16), as well as significant surface alterations. Overall, these findings demonstrate that dermaseptins might constitute new lead structures for the development of potent antibacterial agents against Acinetobacter baumannii infections.
Chemical composition, Fatty acids profile and Biological properties of Thymus capitatus (L.) Hoffmanns, essential Oil
T . capitatus is widely used in traditional medicine in Tunisia. The main goal of this study was to evaluate the phytochemical composition, the fatty acids profile, the antioxidant, antibacterial, and antifungal activities as well as the cytotoxic potential of the essential oil (EO) of this plant. The identification and the quantification of the different constituents of the tested EO was determined by gas chromatography–mass spectrometry (GC-MS). Antioxidant activities were evaluated by spectrophotometric methods and chemical tests. HCT 116 cells were used to evaluate the cytotoxic effect of the EO. The microdilution method was conducted to evaluate the antibacterial activity. Poisoned food method was used to test the antifungal activities against fungi species such Aspergillus niger and Aspergillus flavus . The EO presented several components, mainly monoterpenes. Results revealed that T . capitatus EO is not cytotoxic and showed excellent antioxidant activity with a dose dependent manner. Regarding antimicrobial activity, T . capitatus EO was efficient against all tested bacteria and fungi.
HPLC-DAD Analysis and Investigation of Biological Properties of the Leaves of Globularia alypum (L.), Infusion Extract
Globularia alypum L. (GA) belonging to the Globulariaceae family is a Mediterranean plant which is widely used in traditional Tunisian medicine. The aim of this study was to investigate the phytochemical composition, antioxidant, anti-arthritic, antiproliferative, antibacterial and antibiofilm potential of aqueous GA leaf extracts (AGAL). Quantitative analyses of the different constituents of extracts were evaluated by high-performance liquid chromatography with photodiode-array detection (HPLC-DAD). Spectrophotometric methods and chemical tests were used for antioxidant and anti-arthritic activities. The antiproliferative study was evaluated using colorectal cancer SW620 cells, while the antibacterial assessment and analysis of the antibiofilm effects were determined by the microdilution method and the crystal violet assay, respectively. AGAL extracts presented several components, mainly Nepetin-7-Glucoside and trans-ferrulic acid. The results showed that they had an important antioxidant (IC50 = 0.34; 0.38 and 1.20 mg/mL) and anti-arthritic (IC50 = 2.94 mg/mL) properties, and these effects are displayed in a dose-dependent manner. In addition, this extract demonstrated significant antiproliferative (IC50 = 50 µg/mL), antibacterial (MIC = 6.25 mg/mL and MBC = 6.25 mg/mL), and antibiofilm (59.70% at 25 mg/mL) properties especially against S. aureus. The results achieved confirm the important role of this plant as a source of therapeutic activities.
Analysis of Pathogens of Urinary Tract Infections Associated with Indwelling Double-J Stents and Their Susceptibility to Globularia alypum
Ureteral double-J stents are frequently used to prevent urinary obstruction. They can develop bacterial colonization and encrustation, which leads to persistent infections that seldom respond to antibiotic treatment. Thus, the goal of this study was to evaluate the local spectrum of bacterial pathogens and their susceptibility to natural compounds. A total of 59 double-J ureteral stents from 59 consecutive patients were examined. The samples were inoculated on agar culture mediums. Extracts of Globularia alypum L. were evaluated for their antibacterial activity with the diffusion and broth dilution methods; for antibiofilm activity, the crystal violet assay was used. The identification and the quantification of the different constituents of extracts were determined by reverse-phase high-performance liquid chromatography (RP-HPLC). Bacterial growth was found in three patients (5.1%). Enterococcus faecalis (1.7%), Acinetobacter baumanii (1.7%), and Pseudomonas putida (1.7%) strains were more commonly detected. They were resistant to several common antibiotics. All extracts presented several components, mainly nepetin-7-glucoside and trans-ferulic-acid, and they had antibacterial activity (MIC = 6.25 mg/mL and MBC = 6.25 mg/mL), and antibiofilm (59.70% at 25 mg/mL) properties, especially against Acinetobacter baumanii. The results achieved confirm the important role of this plant as a source of therapeutic activities.
Effect of Zinc Oxide Nanoparticles on Liver Functions in Albino Mice
An alarming number of zinc oxide nanoparticles (ZnO-NPs) have leaked into the environment, endangering the tissues of many living creatures, due to the recent surge in their use in several items. Through intra-peritoneal injection, this research intends to examine the impact of ZnO-NPs on the hepatic and gastrointestinal structures of male albino mice. For seven and 14 days, animals were given 0.1 ml of 100 and 200 mg kg-1 of 50 nm-size ZnO-NPs, respectively. In contrast, those in the control group were given only water and food. The results demonstrated that the treated mice's livers underwent functional changes and histological damage. After seven and 14 days, there was a notable rise in the average levels of the glutamate-oxaloacetate transaminase and glutamate-pyruvate transaminase enzymes in comparison to the control group (p≤0.05). Concentration time determines the magnitude of this impact. When enzyme levels vary, it means the liver isn't working properly. Histological changes in the liver, such as necrosis, destruction of hepatocyte membranes, widening of sinusoidal spaces and vacuolation of their cytoplasm, vascular congestion, and an increased number of Kupffer cells, were induced in mice treated with ZnO-NPs at two studied concentrations (100 and 200 mg/kg) for seven and 14 days, respectively. These effects were time-dose-dependent, according to the results of hematoxylin-eosin staining of liver tissue images.
Phytochemical profile, cytotoxic, antioxidant, and allelopathic potentials of aqueous leaf extracts of Olea europaea
Although bioactivities of Olea europaea (OE) have been widely described, most of them were related to its methanolic extracts or its essential oils, While data related to aqueous extracts still very scarce. Thus, in this study, the phytochemical composition, the antioxidant activity, the cytotoxic potential, and the allelopathic potential of aqueous leaf extracts from two varieties of Olea europaea were investigated and compared. High‐performance liquid chromatography (HPLC) was used to identify and quantify the constituents of the tested plants, and spectrophotometric methods to evaluate antioxidant activities. The cytotoxic potential was investigated using murine oligodendrocytes (158N) while germination seeds’ test was used for allelopathic activity. HPLC analysis showed the presence of 10 phenolic compounds in both extracts. Chemlali variety showed the highest antioxidant and allelopathic activities. Regarding the cytotoxicity effect, a significant increase in cell viability was observed with both of our extracts compared to untreated cells. These results confirm that aqueous extracts from OE produce a range of substances with potential antioxidant, antifungal, and allelopathic effects without toxic effects. Thus, they could be used as an alternative of chemical compounds. Data related to aqueous extracts are relatively rare. Thus, in this study, the phytochemical composition, the antioxidant activity, the cytotoxic potential, and the allelopathic potential of these extracts were investigated and compared.
Evaluation of the Antibacterial Activity of New Dermaseptin Derivatives against IAcinetobacter baumannii/I
Nosocomial infections represent one of the biggest health problems nowadays. Acinetobacter baumannii is known as an opportunistic pathogen in humans, affecting people with compromised immune systems, and is becoming increasingly important as a hospital-derived infection. It is known that in recent years, more and more bacteria have become multidrug-resistant (MDR) and, for this reason, the development of new drugs is a priority. However, these products must not affect the human body, and therefore, cytotoxicity studies are mandatory. In this context, antimicrobial peptides with potential antibacterial proprieties could be an alternative. In this research, we describe the synthesis and the bioactivity of dermaseptins and their derivatives against Acinetobacter baumannii. The cytotoxicity of these compounds was investigated on the HEp-2 cell line by MTT cell viability assay. Thereafter, we studied the morphological alterations caused by the action of one of the active peptides on the bacterial membrane using atomic force microscopy (AFM). The cytotoxicity of dermaseptins was concentration-dependent at microgram concentrations. It was observed that all tested analogs exhibited antibacterial activity with Minimum Inhibitory Concentrations (MICs) ranging from 3.125 to 12.5 μg/mL and Minimum Bactericidal Concentrations (MBCs) ranging from 6.25 to 25 μg/mL. Microscopic images obtained by AFM revealed morphological changes on the surface of the treated bacteria caused by K[sub.4] S4(1-16), as well as significant surface alterations. Overall, these findings demonstrate that dermaseptins might constitute new lead structures for the development of potent antibacterial agents against Acinetobacter baumannii infections.